CSci 8980

Basics of Machine Learning and Deep Learning (Part I)

Machine Learning

• Tom Mitchell:

- An algorithm that is able to learn from data

- Learning?
 - A computer program is said to learn from experience E with respects to some class of tasks T and performance measure P, if its performance at tasks T, as measured by P, improves with experience E.

Machine Learning

- Task types
 - Classification: k categories
 - Regression: predict a value
 - Structured outputs: decompose/annotate output
 - Anomaly detection
- Experience E; samples x
 - Supervised: labelled outputs => p (y|x)
 - Unsupervised: non-labelled outputs => p(x)
 - Reinformement learning: seq. experience $x_1 x_2 \dots$

Machine Learning

- Input is represented by features
 - image: pixels, color, ...
 - game: move right
- Extract features from inputs to solve a task
 - Classic ML: human provides features
 - DL: system learns representation (i.e. features)
 - From simpler to complex (layers of simpler)

DL vs. ML

- Learning representations and patterns of data
- Generalization (failure of classic AI/ML)
- Learn (multiple levels of) representation by using a hierarchy of multiple layers

Why is DL useful?

- Manual features
 - over-specified, incomplete and take a long time to design and validate
- Learned Features are easy to adapt, fast to learn
- Deep learning provides a universal, learnable framework for representing world information

In ~2010 DL started outperforming other ML techniques: e.g. speech, NLP, ...

Big Win in Vision

ImageNet: The "computer vision World Cup"

Machine Learning Basics

Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed

Methods that can learn from and make predictions on data

ML in a Nutshell

- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

(Model) Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- K-nearest neighbor
- Etc.

Evaluation

- Differ between supervised and unsupervised learning
 - Accuracy
 - Precision and recall
 - Mean squared error
 - Max Likelihood
 - Posterior probability
 - Cost / Utility
 - Entropy
 - Etc.

Optimization

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming

Types of Learning

- Supervised learning
 - Training data includes desired outputs
 - Prediction, Classification, Regression
- Unsupervised learning
 - Training data does not include desired outputs
 - Clustering, Probability distribution estimation
 - Finding association (in features), Dimension reduction
 - Best representation of data
- Reinforcement learning
 - Rewards from sequence of actions
 - Seq. decision making (robot, chess, games)

Types of Learning: examples

Supervised: Learning with a **labeled training** set Example: email *classification* with already labeled emails

Unsupervised: Discover **patterns** in **unlabeled** data Example: *cluster* similar documents based on text

Reinforcement learning: learn to **act** based on **feedback/reward** Example: learn to play Go, reward: *win or lose*

Comparison

Learning techniques

- Supervised learning categories and techniques
 - Linear classifier (numerical functions)
 - Works well: output depends on many features
 - **Parametric** (probabilistic functions)
 - Work wells: limited data, but with assumptions about function
 - Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models (HMM), ...
 - Non-parametric (Instance-based functions)
 - Works well: Lot of data, no prior knowledge
 - *K*-nearest neighbors, Kernel regression, Kernel density estimation, ...

Learning techniques

- Unsupervised learning categories and techniques
 - Clustering
 - K-means clustering
 - Spectral clustering
 - Density Estimation
 - Gaussian mixture model (GMM)
 - Graphical models
 - Dimensionality reduction
 - Principal component analysis (PCA)
 - Factor analysis

Classification

- Assign input vector to one of two or more classes
- Any decision rule divides input space into decision regions separated by decision boundaries

• Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Classifiers: Nearest neighbor

$f(\mathbf{x}) =$ label of the example nearest to \mathbf{x}

- All we need is a distance function for our inputs
- No training required!

K-nearest neighbor

Assign label of nearest training data point to each test data point

1-nearest neighbor

3-nearest neighbor

5-nearest neighbor

- Cannot discriminate between features
 - Poor generalization if small"training set"

- Training: given a *training set* of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Example

• Apply a prediction function to a feature representation of the image to get the desired output:

Generalization

Training set (labels known)

Test set (labels unknown)

• How well does a learned model generalize from the data it was trained on to a new test set?

Steps

Training and testing

- Training is the process of making the system able to learn/generalize
- No free lunch rule:
 - Training set and testing set come from the same distribution
 - No universal ML algorithm!
 - Need to make some assumptions

Under{Over} fitting

- ML algorithm must perform well on unseen inputs "generalization"
 - Training error run training data back on model
 - Testing error error on new data
- Underfit
 - High training error
- Overfit

- Gap between training and testing error too large

Generalization

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility)
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample)

Regularization

Effect of Training Size

Fixed prediction model

Error

Number of Training Examples

≻

Comparison of errors

Using logistic regression

Training Error rate: 0.11

Error rate: 0.145

Next Week

- More on deep learning
- Start research papers on Thursday