
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325049231

RACC: Resource-Aware Container Consolidation using a Deep Learning

Approach

Conference Paper · May 2018

DOI: 10.1145/3217871.3217876

CITATIONS

0
READS

202

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Maintaining response time SLA for cloud applications View project

Detecting a Near Optimal Attack Path View project

Saurav Nanda

Purdue University

7 PUBLICATIONS   25 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Saurav Nanda on 20 May 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325049231_RACC_Resource-Aware_Container_Consolidation_using_a_Deep_Learning_Approach?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325049231_RACC_Resource-Aware_Container_Consolidation_using_a_Deep_Learning_Approach?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Maintaining-response-time-SLA-for-cloud-applications?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Detecting-a-Near-Optimal-Attack-Path?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saurav_Nanda?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saurav_Nanda?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Purdue_University?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saurav_Nanda?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saurav_Nanda?enrichId=rgreq-f3d83646fdb6f07f767f987eebb17747-XXX&enrichSource=Y292ZXJQYWdlOzMyNTA0OTIzMTtBUzo2Mjg0MjQ3ODc4OTQyNzlAMTUyNjgzOTU1Mzg3MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


RACC: Resource-Aware Container Consolidation using a Deep
Learning Approach
Saurav Nanda, Thomas J. Hacker

Department of Computer and Information Technology
Purdue University

West Lafayette, Indiana
{nandas,tjhacker}@purdue.edu

ABSTRACT
Resource optimization has always been a big challenge in modern
data centers. The process of performing workload consolidation on
a minimal number of physical machines is becoming more complex
when these data center began supporting containers in addition to
virtual machines (VMs). With the increasing usage of containers
with VMs in data centers, it becomes critical to address this problem
from container’s point of view - that is to optimally allocate contain-
ers in the fewest number of physical hosts. Depending on the type of
application workload or tasks, infrastructure providers may provi-
sion separate containers to handle each task. These tasks may have
different resource demands, such as: some of these task are CPU in-
tensive, some memory intensive, some I/O intensive and some may
be network intensive. Also, it is not necessary for all physical ma-
chines in the data center are even so they may have different kinds
of machines with different resource capacity. Hence, the challenge
is to consolidate all the active containers with different resource
requirements on the minimum number of physical machines that
are not even. We formulate a multi-resource bin packing problem
and propose a Deep Learning technique called Fit-for-Packing to
place near-optimal number of containers on a physical machine.
Experimental results show that our model achieves an average
training accuracy of 82.01% and an average testing accuracy of
82.93%.

CCS CONCEPTS
• Computing methodologies→Machine learning; Learning
paradigms; Reinforcement learning;

KEYWORDS
Container Consolidation, Deep Learning, Quality of Service (QoS)

1 INTRODUCTION
The usage of cloud computing infrastructure in small/large scale
organizations is rapidly increasing primarily due to their pay-as-
you-go model in which you pay only for resources that you actually
use and you can also choose on-demand scaling of your resources.
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Apart from standard cloud services, such as Infrastructure as a Ser-
vice (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS), Piraghaj et al. [7] described about a new kind of infrastruc-
ture service called Containers as a Service. Docker [6] is a good
example of CaaS that leverage the same kernel with the physical
machine, lightweight compared to VMs and provides portability to
the application developers. Resource optimization using workload
consolidation is critical research problem to maintain application
performance, optimal power consumption and load balancing in
a cloud infrastructure. Within the addition of a CaaS layer in the
cloud infrastructure, there is a need to address the container con-
solidation problem to ensure the optimal usage of resources. The
problem of optimally allocating VMs/containers in the fewest num-
ber of hosts is a classic bin packing problem that is NP-Hard. Our
problem is slightly different from classic bin packing problem as
we are dealing with different size of balls (containers with different
resource requirements) and different size of bins (physical machines
with different resource capacity) There are a good amount of differ-
ent theoretical models that tried to solve this optimization problem.
Beloglazov et al. [1] described that these theoretical models are
not practical enough to be used in real-world cloud infrastructure
providers as the optimization solver may take up to 30 minutes
for just 15 nodes. Hence, we use a deep reinforcement learning
approach to transform this multi-resource bin packing problem
into a deep learning problem. We validate our proposed Deep Rein-
forcement Learning approach by implementing our model on top of
DeepRM, which was developed by [5] for resource scheduling using
deep learning, and achieve an average training accuracy of 82.01%
and an average testing accuracy of 82.93%. To the best of our knowl-
edge, our proposed methodology is the first one that leverages Deep
Learning approach to solve container consolidation problem while
keeping track of resource demands of each container.

2 MOTIVATION
In this section, we explain our motivation based on an example
that is inspired by Grandl et al. [3], we are considering a cluster
with a total resource capacity of of 36 CPU cores, 72GB of memory,
and 6Gbps of network bandwidth. Let us consider a scenario where
the cluster is used to execute 3 map reduce jobs job-1, job-2 and
job-3. The job-1 has 18 mapper tasks, job-2 / job-3 has 6 mapper
tasks, and each of them has 3 reducer tasks. Each mapper task for
job-1 requires 2 CPU and 4GB memory, and for job-2 and job-3 they
require 6 CPU and 2GB memory. On the other hand, each reducer
task requires 2Gbps of network and a negligible amount of CPU and
memory. We consider that the infrastructure is designed in such a

https://doi.org/10.1145/3217871.3217876
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(a) Fairness algorithm

(b) Multi-resource packing algorithm

Figure 1: Comparison of container scheduling based on fair-
ness and multi-resource packing algorithm

way that we instantly create a new container for eachmapper and re-
ducer task as per the requirement. Hence, scheduling/consolidating
these jobs in an optimal way is same as consolidating/scheduling
these containers that is running each mapper or reducer task.

Any typical fairness algorithm will schedule these jobs in such a
way that every job gets an equal amount of resource, so the 6 map-
pers of job-1, the 2 mappers of job-2 and the 2 mappers of job-3. All
the mapper tasks will be completed by time 3t. However, this kind
of fairness algorithm is inducing a 40GB of unused memory in the
mapper phase. During the execution reducer tasks, the fair sched-
uler will run one reducer from each job so each of them get equal
amount of network resource and all reducer tasks are completed
at time 6t as shown in Figure 1a. Now, consider a scheduler that
packs these jobs/containers based on their resource requirement
rather than the fairness. Based on resource-aware scheduling: 1)
all 36 mappers of job-1 are scheduled first so that all the memory
available in the cluster gets utilized; 2) all 12 mapper tasks of job-2
are scheduled along with 6 reducer tasks job-1; and 3) finally all
jobs are completed by time 4t as shown in Figure 1b. Hence, such
multi-resource packing algorithm can reduces the total job com-
pletion of the cluster by 33% and we get more physical machines
free by consolidating these containers, which are running these
mappers and reducers tasks.

3 PROBLEM FORMULATION
This section presents the variables and list of assumptions related to
multi-resource packing to consolidate the containers running differ-
ent jobs/applications into minimum number of physical machines.
The derivation steps we present below for our multi-resource bin-
packing problem follows the derivation developed and described
by Grandl et al. [3] to solve grid scheduling problem using their
Tetris scheduler. We consider a grid computing center responsible

for executing multiple jobs, such as batch jobs, map-reduce jobs or
any other type of high performance computing jobs, as described
by Higgins et al. [4]. Every job may be a executed on a separate
container or they may share it with some other job(s) and tries to
schedule these jobs to minimize the makespan which is equivalent
to maximize the efficiency of consolidating these containers. The
makespan is defined as the the amount of time taken to complete
the processing of all the jobs. Current data centers tend to schedule
these jobs based on a fair share algorithm so that each job gets equal
amount of computing resources. However, fair schedulers are gen-
erally not efficient with respect to dynamically changing resource
demands as the do not consider the individual resource demands of
each job. The jobs may have different resource requirements, such
as some of themmay be CPU intensive, some are memory intensive,
some are i/o intensive and some are network intensive jobs. Sim-
ilarly, different containers running these different jobs also have
different resource requirements (Di,r ) and current VM/container
scheduling algorithms do not consider the individual resource de-
mands of individual jobs that leads to resource fragmentation and
over allocation of resources. Thus, the current scheduling algo-
rithms that are based on fairness can schedule all containers with
similar resource requirements (example: containers with all I/O
intensive jobs) on same physical machine (with a total capacity of
Ci,r ) to maintain the fairness but that may lead to wastage of all
CPU resources.

Our problem is bit different from classic bin packing problem
as the resource demands of all containers are highly dynamic and
it depends upon the current physical machine location. We focus
on two major objectives: 1) adaptive learning of resource require-
ments of each job (Jr ); and 2) monitoring of available resources
(Mr ). Prior scheduling algorithms, such as Smallest Remaining Time
First (SRTF) does not have an optimal packing process and Fair
Schedulers have a higher job completion time. Hence, we need a
technique that is packing efficient called Fit-for-packing. We assume
that network resources are uniform throughout the grid and we

Table 1: Variable Definition

Symbol Definitions
Ci,r capacity (c) of each resource (r ) on machine (i).
D j,r demand of each container (j) for resource (r ).
ϕti, j A boolean value. 1 if a container j is allocated

to machine i at time t (time is discrete).
αr,ti, j α units of resource type r allocated to container

j on machine i at time t
i j container j assigned on machine i
dj,cpu , Aj,cpu CPU demanded (d) and CPU allocated (A) to a

container (j).
dj,mem ,
Aj,mem

Amount of memory demanded (d) and memory
allocated (A) by a container (j).

dj,dR , dj,dW ,
Aj,dR , Aj,dW

Amoung of disk read and write bandwidth de-
manded (d), and the amount of (A) of bytes to
be read and write from container (j).

Ci,cpu ,Ci,mem ,
Ci,dR , Ci,dW

Maximum number of CPU, memory size, and
bandwidth for disk read/write by a machine (i).
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Figure 2: Overview of System Architecture

are not considering any network latency in our model. Also, we do
consider the number of machines may change because of failure
or new addition. Based on the above problem description, we have
following constraints:

• Total resource usage on a machine i should never exceed its
capacity. ∑

αr,ti, j ≤ Ci,r∀i, t , r (1)

where αr,ti, j represents α units of resource type r allocated to
container j on machine i at time t .

• Tasks should not exceed their maximum resource require-
ment, and no resources should be allocated to an inactive
task.

0 ≤ αr,ti, j ≤ D j,r∀r , i, j, t (2)

• To avoid the overhead of preemption, a scheduling technique
may choose to provide uninterrupted access of resource
until the container scheduling and job execution on these
containers is completed.

jend∑
t=jstar t

ϕti, j =

{
jduration ∀ i ∈ i j
0 ∀ other machines

}
(3)

where jstar t represents the starting time of job execution at
container j , jend represents the end time of job execution at
container j , and jduration represents the total job execution
time at container j.

• The time taken by a container to finish the jobs depends on
both container placement and resource allocation.

jduration =max
©«

Aj,cpu∑
t α

cpu,t
i j , j

,
Aj,mem∑
t α

mem,t
i j , j

,
Aj,dW∑
t α

dW ,t
i j , j

Ai, j,dR∑
t α

dR,t
i j , j

ª®¬ (4)

where Aj,cpu , Aj,mem represents the amount of CPU and
memory allocated (A) to a container (j) and Aj,dR , Aj,dW
represents the amount of (A) of bytes to be read and write
from container (j).

Hence, we formulate our objective function based on minimizing
the makespan that is equivalent of maximizing packing efficiency
and to minimize the job completion time (JCT ) of job J , we can
formulate the following equation for job J’s finish time (Tf inish ):

Tf inish =maxcontainer j ∈Jmax JCTt (ϕ
t
i, j > 0) (5)

and to maintain the fairness throughout the process, we have fol-
lowing constraint at time t for the share of most prominent resource

Figure 3: Deep Neural Network based Reinforcement Learn-
ing Approach for near-optimal placement of containers.

(PR ) of job J :

PR =maxr esourcer

∑
i, j ∈J α

r,t
i, j∑

i Ci,r
(6)

4 SYSTEM ARCHITECTURE - DEEP
LEARNING APPROACH

In this section, we describe our Deep Learning based approach to
solve this multi-resource scheduling problem. Figure 2 shows the
overall architecture of our system that uses a container manager to
assign incoming jobs on respective containers and sends a set of
containers to our scheduling algorithm as an input. Our scheduling
algorithm packs these container based on the resource requirement
of these jobs based on the training provided to our deep neural
network. Finally, we have a resource manager module that is re-
sponsible for reporting the resource utilization of each physical
host and the total number of available hosts. Within our scheduling
module, we follow a step-by-step process as shown in Figure 3:
1) firstly, we classify all incoming jobs and their corresponding
containers into four different categories based on their resource
requirements, such as CPU intensive, memory intensive, I/O inten-
sive and network intensive; 2) using the historical data of container
placement we train our neural network (NN) for all the policies
discussed section 7.3 that includes both hard and soft constraints;
3) we assign probabilistic weights to pack these containers based
on their resource requirements; and 4) after testing the output from
constraint-based NN, we verify if all the hard constraints are met
and soft constraint violations are within a threshold value.

5 EXPERIMENTAL SETUP
In this section, we describe our experiments that demonstrates
the results of our Deep Learning approach to solve this problem
resource-aware container consolidation. To validate our proof-of-
concept, we conducted some initial experiments using DeepRM
that is developed by Mao et al. [5] for resource scheduling using
deep learning technique. DeepRM was primarily developed for grid
scheduling where all incoming jobs are scheduled as per their re-
source requirement which is very similar to our scenario except
that we are scheduling containers rather than the actual jobs run-
ning on top of these containers. We use standard python libraries
deep learning and data analysis, such as Theano 1, Lasagne=0.1,
numpy, scipy, and matplotlib. We leverage a neural network (NN)
1https://pypi.python.org/pypi/Theano
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Figure 4: Performance enhancement in discounted total re-
ward and the slowdown due to training process. Random
and SJF models are constant as they do not have an incre-
mental learning due to lack of feedback from last iteration.
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Figure 5: Comparison of our proposed RACCmodel with SJF
and Random scheduling approach in terms of the slowdown
and the average model accuracy for training/testing.

with hidden layers that are completely connected with each other
and has a total number of 25 neurons. We conducted our evaluation
on a computer with an Intel(R) Core(TM) i7 − 5930K processor
with 3.50 GHz speed, 12 CPU cores and 32 GB memory, Ubuntu
16.04 as the primary operating system. The computer has a graphics
processing unit (GPU) with NVIDIA Tesla K40c.

5.1 Results and Discussion
We evaluated our system by conducting a set of experiments to
present the preliminary results. We use a Bernoulli distribution gen-
erate a synthetic data of incoming containers that are executing jobs
with different resource requirements. We choose a fixed value of
10 time steps for the duration since last container requests were re-
ceived. We consider these containers to be executing batch jobs and
we consider two different size of jobs: 1) smaller jobs with expected
completion time between 1t and 3t , where t represents a unit time;
and 2) bigger jobs with expected completion time between 10t and
15t . We currently consider three types resource intensive jobs (out
of which only one is dominant): CPU, memory and disk I/O that are
assigned randomly to each container. We evaluate our model based
on two metrics: 1) job slowdown that is calculated as JS = Tc/Te ,
whereTc represents the job completion time andTe is expected job
duration; and 2) training and testing accuracy of the model. After
running 100 iterations, 100 is a significant number (> 30) as per
Central Limit Theorem [2], we analyzed the performance enhance-
ment in discounted total reward (measure of model convergence
defined by the Theano python package) and the slowdown due to

the training process. The second part of Figure 4 shows the mean
slowdown of the policy NN (refer Figure 3) in each iteration. We
compare our RACC model with other baselines approaches, such
as the shortest job first (SJF) algorithm and the random placement
of containers. We observe incremental enhancement of our RACC
with an increasing number of iterations. At the beginning of itera-
tion, SJF and Random algorithms perform better than our RACC
algorithm. However, after ∼ 10 iterations slowdown performance
of RACC is much better than that of SJF and Random algorithms.
To demonstrate the model convergence, first part of Figure 4 shows
the maximum and mean value of discounted total reward that in-
creases with increasing number of iterations as the policy NN keeps
improving based on the feedback received from previous iteration.
Also, Figure 5a shows the cumulative distribution function (CDF)
of average slowdown and we observe that for first 40 iterations
RACC has a higher probability compared to that of SJF and Random
algorithms but, after 40 iterations the difference between all these
algorithms becomes small. Finally, Figure 5b shows the training ac-
curacy of 82.01% and testing accuracy of 82.93% of our RACCmodel.
To summarize, RACC is capable of minimizing the job completion
time of the jobs running of different containers by 1) performing a
near-optimal packing; and 2) conducting resource-aware container
placement to minimize the wastage of system resources.

6 CONCLUSION
In this paper, we used a Deep Reinforcement Learning approach to
consolidate all the active containers with different resource require-
ments on minimum number of physical machines. We proposed
and implemented a multi-resource bin packing algorithm (RACC)
that leverages a Deep Learning technique called Fit-for-Packing to
place near-optimal number of containers on a physical machine.
Based on preliminary results, we observe that RACC achieves better
job slowdown compared to other baseline algorithms, and RACC
also shows a significant training accuracy of 82.01% and an average
testing accuracy of 82.93%. We are working further to evaluate
our proposed methodology in a real environment by using CRIU 2

software tool that can be leveraged to perform container migration.
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