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ABSTRACT
Deep neural networks are becoming increasingly popular in
mobile sensing and computing applications. Their capabil-
ity of fusing multiple sensor inputs and extracting temporal
relationships can enhance intelligence in a wide range of ap-
plications. One key problem however is the noisy on-device
sensors, whose characters are heterogeneous and varying
over time. The existing mobile deep learning frameworks
usually treat every sensor input equally over time, lacking
the ability of identifying and exploiting the heterogeneity of
sensor noise. In this work, we propose QualityDeepSense, a
deep learning framework that can automatically balance the
contribution of sensor inputs over time by their sensing qual-
ities. We propose a sensor-temporal attention mechanism to
learn the dependencies among sensor inputs over time. These
correlations are used to infer the qualities and reassign the
contribution of sensor inputs. QualityDeepSense can thus
focus on more informative sensor inputs for prediction. We
demonstrate the effectiveness of QualityDeepSense using
the noise-augmented heterogeneous human activity recogni-
tion task. QualityDeepSense outperforms the state-of-the-art
methods by a clear margin. In addition, we show Quality-
DeepSense only impose limited resource-consumption bur-
den on embedded devices.
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1 INTRODUCTION
The proliferation of embedded and mobile devices able to
perform complex sensing and recognition tasks unveils the
future of intelligent Internet of things. Nowadays Internet
of Things (IoT) applications cover a broad range of areas
including health and well-being [8], context sensing [11, 12],
crowd sensing and localization [10, 15].
At the same time, deep neural networks have advanced

greatly in processing human-centric data, such as images,
speech, and audio. The use of deep neural network has also
gained increasing popularity in mobile sensing and comput-
ing research [18]. Great efforts have been made on designing
unified structures for fusing multiple sensing inputs and ex-
tracting temporal relationships [9, 16], compressing neural
network structures for reducing resource consumptions on
low-end devices [4, 19], and providing well-calibrated uncer-
tainty estimations for neural network predictions [6, 17].

To further advance such development for IoT applications,
we need to address the key challenge brought by the het-
erogeneity of input sensor quality. On one hand, in order to
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control the overall cost, IoT devices are equipped with low-
cost sensors. Compared to dedicated sensors, they have in-
sufficient calibration, accuracy, and granularity. The sensing
quality of the heterogeneous on-device sensors can therefore
be quite different. On the other hand, the unpredictable sys-
tem workload, such as heavy multitasking and I/O load, can
lead to unstable sensor sampling rates, because the OS may
often fail to attach an accurate timestamp for each sensor
measurement. The sensing quality can therefore be hetero-
geneous over time as well.

In order to tackle with the heterogeneity of sensing qual-
ities over sensors and time, we propose QualityDeepSense
that designs a deep learning framework with a sensor-
temporal self attention mechanism. The proposed self at-
tention mechanism improves a neural network’s focus on
different sensor inputs by inferring their sensing qualities.
The key idea of QualityDeepSense is to identify the qualities
of sensing inputs by calculating the dependencies of their
internal representations in the deep neural network.
We assume that each sensor input is the composition of

sensing quantity and noise. A sensing input with higher
quality should contain a larger proportion of sensing quan-
tity and a smaller proportion of noise. However, measuring
the quality of sensing input directly is a challenging task.
QualityDeepSense solves the problem by exploiting the de-
pendencies among all input sensing quantities. For a partic-
ular IoT application, the correlated sensing quantities form
complex dependencies that determine the final prediction
or estimation, while the noises do not. Therefore, the extent
of dependency and correlation among sensing inputs can be
used to estimate the sensing quality. For example, a sensing
input showing strong dependencies on other inputs is more
likely a high-quality measurement.

QualityDeepSense estimates the dependencies of sensing
inputs by proposing a sensor-temporal self-attention mecha-
nism. It calculates the dependencies among different sensors
and over time in a hierarchical way to reduce computation.
The self-attention mechanism is a component that is inserted
when the neural network merge the information from differ-
ent sensors or merge over time. The self-attention compo-
nent can be viewed as a weighted sum of inputs, where the
weight is controlled by the degree of dependency calculated
by internal representations.

We evaluate QualityDeepSense with noise-augmented het-
erogeneous human activity recognition task (N-HHAR). The
original heterogeneous human activity recognition task per-
forms human activity recognition with accelerometer and
gyroscope measurements [12]. We add white Gaussian noise
on the time domain or the frequency domain to generate
noise-augmented datasets. We compare QualityDeepSense to
the state-of-the-art DeepSense framework [16] to illustrate

the efficacy of our sensor-temporal self-attention mecha-
nism on exploiting heterogeneous sensing quality. We also
test QualityDeepSense on Nexus 5 phones to show the low
overhead of QualityDeepSense.

The rest of this paper is organized as follows. Section 2 in-
troduces relatedwork on dealingwith heterogeneous sensing
quality and attention mechanism. We describe the technical
details of QualityDeepSense in Section 3. The evaluation is
presented in Section 4. Finally, we discuss the results and
conclude in Section 5.

2 RELATEDWORK
A key problem in mobile sensing research is to handle the
heterogenous sensing quality. Stisen et al. systematically
investigate sensor-specific, device-specific and workload-
specific heterogeneities using 36 smartphones and smart-
watches, consisting of 13 different device models from four
manufacturers [12]. These extensive experiments witness
performance degradation due to the heterogenous sensing
quality.
Recently, deep neural networks have achieved great im-

provement on processing human-centric data. Lane et al.
proposed to use deep neural networks to solve common
audio sensing tasks [9]. Yao et al. designed a unified deep
neural network framework called DeepSense for mobile sens-
ing and computing tasks. DeepSense can effectively fuse
information from multiple sensing inputs and extract tem-
poral relationships. However, none of these works has taken
the heterogenous sensing quality into consideration. To the
best of our knowledge, QualityDeepSense is the first deep
learning framework that exploits sensing quality for IoT
applications.
At the same time, attention mechanism has made great

advances in traditional machine learning tasks. Bahdanau
et al. propose the first attention mechanism for machine
translation [3], which improves word alignment. Xu et al.
design the attention mechanism for image caption with both
hard and soft attentions [14]. Recently, Vaswani et al. exploit
the attention mechanism by designing a neural network
with only self-attention components [13]. To the best of our
knowledge, we are the first to use self-attention mechanism
for estimating and exploiting heterogenous sensing quality.

3 SYSTEM FRAMEWORK
In this section we introduce the QualityDeepSense frame-
work that automatically balances the contribution of sensor
inputs over time according to their sensing qualities. We
separate our description into two parts. We first describe the
overall structure of QualityDeepSense. Then we describe the
sensor-temporal self-attention module in detail.
For the rest of this paper, all vectors are denoted by bold

lower-case letters (e.g., x and y), while matrices and tensors
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Figure 1: Main architecture of the QualityDeepSense framework.

are represented by bold upper-case letters (e.g.,X and Y). For
a vector x, the jth element is denoted by x[j]. For a tensor
X, the t th matrix along the third axis is denoted by X· ·t ,
and other slicing denotations are defined similarly. We use
calligraphic letters to denote sets (e.g., X andY). For any set
X, |X| denotes the cardinality of X.

3.1 QualityDeepSense Structure

For a particular application, we assume that there areK dif-
ferent types of input sensors S = {Sk }, k ∈ {1, · · · ,K }. Take
a sensor Sk as an example. It generates a series of measure-
ments over time. The measurements can be represented by a
d (k ) × n(k ) measured value matrix V and a n(k )-dimensional
timestamp vector u, where d (k ) is the dimension for each
measurement (e.g., raw measurements along x, y, and z axes
for motion sensors have dimension 3) and n(k ) is the number
of measurements. We split the input measurements V and u
along time (i.e., columns for V) to generate a series of non-
overlapping time intervals with width τ ,W = {(V(k )

t , u
(k )
t )},

where |W| = T . Note that, τ can be different for different
intervals, but here we assume a fixed time interval width
for succinctness. We then apply Fourier transform to each

element inW , because the frequency domain contains bet-
ter local frequency patterns that are independent of how
time-series data is organized in the time domain. We stack
these outputs into a d (k ) × 2f × T tensor X(k ) , where f is
the dimension of frequency domain containing f magnitude
and phase pairs [16]. The set of resulting tensors for each
sensor, X = {X(k ) }, is the input of QualityDeepSense.
As shown in Figure 1, QualityDeepSense inserts

sensor-temporal attention modules hierarchically into
DeepSense [16], which empowers the framework to esti-
mate and utilize the input sensing qualities and boost the
overall prediction performance.

The overall structure can be separated into three subnets.
For each time interval t , the matrix X(k )

..t will be fed into an
individual convolutional subnet for extracting the relation-
ships within the frequency domain and across the sensor
measurement dimension. The individual convolutional sub-
net learns high-level relationships X(k,1)

..t , X(k,2)
..t , and X(k,3)

..t
hierarchically for each sensing input individually.

Then we flatten the matrix X(k,3)
..t into x(k,3)..t and concat all

K vectors {x(k,3)..t } into aK-rowmatrixX(3)
..t , which is the input

of our sensor attention module. The sensor attention module
estimate the sensing quality of K inputs by calculating their
internal dependencies. Then the module generates a K-dim
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Figure 2: The structure of sensor/temporal self-
attention module.
attention vector at , which is used to calculate the row-wise
sumX(4)

..t fromX(3)
..t . The detailed structure of sensor attention

module will be described in Section 3.2.
Next, the merged convolutional subnet hierarchically

learns the relationships X(5)
..t , X

(6)
..t , and X

(7)
..t among K sensing

inputs. The output of merged convolutional subnet is flatten
into vector x(c )..t as the input of recurrent layers.

The recurrent layers is a two-layer Gated Recurrent Unit
(GRU). The input {x(c )..t } for t = 1, · · · ,T are fed into stacked
GRU which generates outputs {x(r )..t } for t = 1, · · · ,T . We
concatenate all T recurrent-layer output {x(r )..t } into a T -row
matrixX(r ) . Then we apply the temporal attention module to
learn the sensing quality over time. The structure of temporal
attention module is similar as the sensor attention module,
which will be described in Section 3.2. The resulting vector
goes through a sofmax layer for classification.

3.2 Sensor-Temporal Self-Attention
Module

In this subsection, we describe the structure of sen-
sor/temporal self-attentionmodule.We assume that the input
of self-attention module is a matrix Z ∈ Rk×f , where k is the
dimension for attention and f is the feature dimension. The
structure of our self-attention module is shown in Figure 2.
Notice that there is no additional parameters involves in the
self-attention module.
The self-attention module can be summarized into two

steps. First, we calculate the attention vector a based on input
matrix Z.

a = Softmax
(
1 · (Z · Z⊺ )

)
(1)

where 1 = [1]k is k-dim vector with all elements equal to 1.
Second, we calculate the weighted sum over the rows of

Z with the attention vector a.

y = a · Z (2)

Here, we provide some explanations about our design.
The purpose of the self-attention module is to estimate the
dependencies among k vectors {Zk ·}. Since Zk · are inter-
nal representation in the neural network, we calculate the
pair-wise dot product among Zk · to estimate their pair-wise
dependency. Next, we sum the dependency matrix D over
rows to estimate the dependency of each input vector on all
others, including itself. Then, we use the Softmax function
to generate the attention vector a, which sums to 1. Finally,
we calculate the weighted sum over the rows of Z with the
attention vector a.

4 EVALUATION
In this section, we evaluate QualityDeepSense using the task
of human activity recognition with motion sensors. We first
introduce our experimental settings, including the hardware,
dataset, and baseline algorithm. We then evaluate our design
in terms of accuracy, time, and energy consumption.

4.1 Hardware
In this evaluation, we run all experiments on the Nexus 5
phone. The Nexus 5 phone is equipped with quad-core 2.3
GHz CPU and 2 GB memory. We manually set 1.1GHz for
the quad-core CPU for stable resource consumptions among
different trials.

4.2 Software
In all experiments, we use TensorFlow-for-Mobile to run
neural networks on Android phones [1]. For other tradi-
tional machine learning algorithms, we run with Weka for
Andorid [2]. All experiments on Nexus 5 run solely with
CPU. No additional runtime optimization is made.

4.3 Dataset
We use the dataset collected by Stisen et al. [12]. This dataset
contains readings from two motion sensors (accelerometer
and gyroscope). Readings were recorded when users exe-
cuted activities scripted in no specific order, while carrying
smartwatches and smartphones. The dataset contains 9 users,
6 activities (biking, sitting, standing, walking, climbStair-up,
and climbStair-down), and 6 types of mobile devices. Ac-
celerometer and gyroscope measurements are model inputs.
Each sample is further divided into time intervals of length τ ,
as shown in Figure 1. We take τ = 0.25 s. Then we calculate
the frequency response of sensors for each time interval, and
compose results from different time intervals into tensors as
inputs. In addition, we add white Gaussian noise on either
time domain or frequency domain with different different
variance σ to generate our noise-augmented dataset.
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Figure 3: The accuracy of algorithms on HHAR with
additive white Gaussian noise on frequency domain.
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Figure 4: The accuracy of algorithms on HHAR with
additive white Gaussian noise on time domain.
4.4 Baseline
We evaluate QualityDeepSense models with the following
baseline algorithms:
(1) DeepSense: The state-of-the-art unified deep learning

framework for IoT applications.
(2) RF: This is a random forest algorithm. It selects all

popular time-domain and frequency domain features
from [5] and ECDF features from [7].

(3) SVM: Feature selection of this model is same as the RF
model. But this model uses support vector machine as
the classifier.

4.5 Effectiveness
We first show the accuracy of all algorithms on the noise-
augmented heterogeneous human activity recognition task,
performing leave-one-user-out evaluation (i.e., leaving out
one user’s entire data as testing data).

We add white Gaussian noise with different variance σ on
frequency or time domain. The results are illustrated in Fig-
ure 3 and 4 respectively. For both cases, QualityDeepSense
can reduce performance degradation by more than 50% com-
pared to DeepSense, thanks to our sensor-temporal self-
attention module that estimate and exploit the input sensing
quality. Compared to the traditional machine learning algo-
rithm, deep neural network models are better at resisting
input noise. For all methods, noise on time domain is easy
to deal with, because we can get rid of some high-frequency
noise with pre-processing.

Figure 5: The correlation between attention and addi-
tive noise.
Then, we run an experiment testing the correlation be-

tween the sensing quality and attentions learnt in Quality-
DeepSense. Since we use the noise-augmented dataset, the
quality of sensing input can be partly decided by the additive
noise. Larger additive noise indicates worse the sensing qual-
ity. In QualityDeepSense, there are two types of attention,
attention over sensor as and attention over time at . We can
easily obtain the overall attention by multiplying the corre-
sponding elements from these two attentions. The result is
shown in Figure 5. Since each sensing measurement does
not contain the same amount of information, the correla-
tion between attention and noise is not linear. However, we
do witness that the attention tends to be smaller when the
measurement has stronger noise.

4.6 Execution Time and Energy
Consumption

Finally we measure the execution time and energy consump-
tion of all algorithms on Nexus 5 phone. We conduct 500
experiments for each metric and take the mean value as the
final measurement. The results are shown in Figure 6 and 7
respectively. Compared to DeepSense, QualityDeepSense
only shows limited overhead on execution time and en-
ergy consumptions, while achieving better predictive per-
formance. Compared to other traditional machine learning
algorithms, the execution time and energy consumption of
QualityDeepSense is acceptable.

5 CONCLUSION
In this paper, we introduce a deep learning framework, called
QualityDeepSense, for solving the heterogeneous sensing
quality problem in IoT applications. QualityDeepSense de-
signs a novel sensor-temporal self-attention module to esti-
mate input sensing quality by exploiting the complex depen-
dencies among different sensing inputs over time. Experi-
ments on noise-augmented human activity recognition show
that QualityDeepSense greatly mitigates the performance
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Figure 6: The execution time of algorithms on Nexus
5.
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Figure 7: The energy consumption of algorithms on
Nexus 5.

degradation caused by low input sensing quality with little
additional computational overhead. This framework is an
important step towards designing deep learning structures
for handling heterogeneous sensing quality without external
calibration. However, more exploration on model design and
system implementation are needed. On one hand, applying
attention mechanism on IoT applications can be different
from its traditional usage in natural language processing and
computer vision due to the nature of multiple-sensor fusing
in IoT systems. On the other hand, more observations and
modeling of IoT systems deployed “in the wild" are needed
to design specific deep learning structures that deals with
heterogeneous sensing quality.
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