
Exploring the Use of Learning Algorithms
for Efficient Performance Profiling

Shoumik Palkar∗, Sahaana Suri∗, Peter Bailis, Matei Zaharia
Stanford DAWN Project

{shoumik,sahaana,pbailis,matei}@cs.stanford.edu

Abstract

A key challenge in profiling programs for identifying performance bottlenecks is
balancing accuracy and runtime overhead. While statistical profilers are canonically
used in production settings due to their low overhead, they treat all events equally
by sampling at a uniform frequency. Thus, infrequent events are rarely sampled if
the sampling rate is low (low accuracy), and low-variance events that take little time
may be sampled too often if the rate is too high (high overhead). The challenge is
that event frequency and runtime is unknown a priori. Tracing profilers circumvent
this problem by instrumenting code and deterministically recording each event, but
this model has traditionally come at the cost of high performance penalties. We
explore the use of learning profilers that systematically trace a program and learn
which parts of a program to profile. Our results show that our technique reduces
the overhead of profiling a production HTML parsing workload by 1.5× compared
to Python’s built-in tracing cProfile module, and provides significantly more
accurate results based on the KL-divergence of the estimated runtime distributions
compared to a popular open-source statistical profiler, for the same overhead.

1 Introduction

Profilers enable developers to identify and repair performance bottlenecks in production systems by
providing a runtime breakdown in an executing program or service, generally at the granularity of
function calls [7]. To reduce the overhead of profiling, modern profilers are often statistical [13, 15,
16, 17, 19, 21, 22]. Rather than instrumenting the entire program and timing each function call (as in
a tracing profiler), statistical profilers sample the program at a regular interval using operating system
interrupts and probe its call stack to estimate where time is spent. This estimation allows profilers to
analyze programs with little intrusion in many cases.

While statistical profilers work well in practice for some applications, they sample the target program
at a regular interval even though events of interest do not occur with a uniform distribution: different
parts of a function take different amounts of time. Thus, to accurately capture short or infrequent
events given a fixed sampling rate, the rate must be set to a high value (which adds overhead) or
the program itself must be long-running (e.g., a web server). Unfortunately, existing alternatives to
statistical profilers—tracing profilers that instrument code— are usually far too expensive to run in
production environments because of the immense performance penalty that they add [7, 14, 19].

In response, we investigate the design of a new profiler that accurately traces programs with low
overhead by learning which parts of a program to profile. Our learning profiler leverages the fact that,
if users only care about the relative distribution of runtimes in their system to identify bottlenecks, we
only want to profile the longest running, highest variance parts of the program aggressively. Functions
with low variance and that take relatively little time can be profiled fewer times to reduce overhead.

∗The authors contributed equally to this work.

1st Workshop on ML for Systems at Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



The key challenge is to adaptively determine which function calls require more profiling and to
quickly reject those that do not, as this is unknown a priori.

As a first step towards this opportunity for learning profilers, we explore two algorithms. First, we
apply a racing algorithm where the goal is to select the best (i.e., most expensive, highest variance)
function calls to profile and dynamically discard the rest. We also evaluate a multi-armed bandits
formulation based on the Successive Rejects [2] algorithm, which provides similar results, albeit
with higher overhead. In the terminology of the multi-armed bandit literature, we treat each profiled
function call as an arm and iteratively remove arms that have low variance and relative impact on
performance. Although our profiler traces the program’s execution, it only imposes the overhead of
measuring a function if the algorithm chooses to profile it. This reduces overhead as our algorithms
cause functions that have little impact on overall performance to be profiled fewer times.

We evaluate a learning profiler prototype via a new profiler for Python, Paikana. Preliminary results
are promising: when profiling a production Python HTML parser, Paikana added 1.5× less overhead
compared to the built-in Python cProfile module, which traces the full program and produces a
deterministic profile. Our profiler returns accurate results as well, correctly identifying the bottleneck
lines and providing a KL divergence of 0.04 when comparing the runtime distributions of Paikana
and cProfile. We also tried benchmarking Paikana against two open-source statistical profilers
for Python [17, 21], but found that they give highly inaccurate results for this workload compared
to cProfile (KL divergence of 2.38). We thus believe that a learning-based tracing system is a
promising approach and hope to further explore it in future work.

2 Related Work

There are several open-source statistical profilers used in a variety of domains [13, 15, 17, 18, 21, 22].
These profilers generally use POSIX timers to interrupt the running program and analyze the executing
stack frame to determine where running time is being spent, or use hardware support to profile based
on hardware events. In Python, PyFlame [19] uses the Linux ptrace utility to achieve the same
goal. In contrast to sampling frames at a regular interval, our goal is to explore a new algorithmic
methodology to reduce profiler overhead by requiring fewer samples for the same accuracy. These
techniques could also lead to improvements in existing statistical profilers.

SWAT [9] extends the framework from burst tracing [10] to use adaptive program tracing to find bugs
in the target program. Our algorithm has a similar design with a different goal: to stop profiling lines
of code as quickly as possible. Several researchers have proposed using various hardware counters to
further optimize profiling [1, 6, 8]. These techniques are largely orthogonal to selecting which lines
to profile, and could be used with Paikana as well.

3 Methodology

When executing long-running programs, users wish to efficiently and accurately identify which
operations are performance bottlenecks. A core challenge in developing a profiler to enable this is
trading-off profiler overhead with accuracy. While a profiler would ideally focus effort on program
segments with the highest runtime and variance, this information is unknown a priori—hence the
need for performance profiling. To combat this challenge, we propose Paikana, a profiler that uses a
racing algorithm to efficiently and accurately profile programs by tracing execution and dynamically
learning which function calls to profile and discard. Paikana outputs a sorted list of the function calls
in the target function and their estimated percent contributions to the total running time.

3.1 Paikana: Choosing Function Calls to Profile

To frame the problem of dynamically selecting lines to profile, we refer to the terminology in the
stochastic multi-armed bandit (MAB) literature. In the stochastic MAB setting, an agent must
iteratively hedge against K competing actions (arms) to maximize cumulative reward. Each action
admits differing and initially unknown reward drawn from some probability distribution. By mapping
each function call in the profiled program to an arm with reward equal to its running time, identifying
bottleneck functions reduces to identifying the top arms.

2



Traditionally used for model selection, racing algorithms such as Hoeffding or Bernstein racing [11,
12] minimize the number of actions required to identify the top arm to a given confidence level. In
Paikana, we implement a racing algorithm that iteratively identifies the function calls with the lowest
runtime and removes them from future consideration when confident of their relative performance
(using a default 95% confidence interval). Specifically, the function call with the lowest average
runtime (i = argminµµµ) is considered for removal. If the upper bound of this function’s confidence
interval is smaller than the minimum of all other functions’ lower bounds (UB[i] < minj LB[j]),
this function is no longer considered for future profiling. For long-running programs, Paikana reruns
the full algorithm periodically at a (configurable) one second interval.

3.1.1 Alternative Algorithms

Paikana is modular, and easily allows for algorithmic changes in how to select which functions to
profile. Thus, we also evaluate algorithms under the pure exploration framework for MAB [4], where
the goal is to optimize the quality of the final recommended action(s), subject to a fixed budget size
of actions. In traditional MAB, the objective is to maximize cumulative reward. As a result, classic
algorithms such as Upper Confidence Bound or ε-greedy strategies [3] typically trade-off between
exploration (trying new actions) and exploitation (focusing on seemingly high-reward actions). In
contrast, the pure exploration framework separates the exploration and exploitation phases —i.e., at
the end of profiler execution, the programmer requires only an accurate estimation of relative runtime
distribution in exchange for low additional computational overhead.

As validation for this approach, we implement the Successive Rejects algorithm from [2] modified for
top m-arm identification. While SR is as accurate as our racing algorithm, it requires a user-specified
profiling budget that dramatically affects the resulting overhead but is difficult to tune a priori; in our
evaluation, we set this value to be the number of iterations racing takes to converge. A follow-up
Successive Accepts and Rejects (SAR) algorithm is tailored for multiple arm identification, but as it
would add additional overhead on top of SR, we defer its evaluation for future work [5].

3.2 Implementation

Paikana is a Python loop profiler implemented as a C extension. We use Python’s system setprofile
function to trace function calls to profile. This allows our C module to run custom code before each
function call and after each function return.

Listing 1 Example of profiling a loop. Users wrap the iterated value with the paikanafor function.

for line in paikanafor(f):
line = line.strip()
token = line.split(",")

Users enable profiling by wrapping an iterator used in a for loop with the paikanafor function
(Listing 1). Before yielding a new item on each iteration of the loop, the custom paikanafor iterator
runs an update function to run the algorithm for choosing which lines to profile during the current
execution. When the loop body invokes a function, the callback will check whether to profile it: if
not, the function returns immediately. If the function is to be profiled, we start a clock and register
that the function is being profiled: when the function returns, the clock is stopped and the runtime is
recorded. We envision that Paikana could also be run on general Python functions or in other domains
where a low overhead tracing mechanism is available (e.g., in distributed systems [20]).

4 Preliminary Results

To evaluate Paikana, we profiled a production Python script that parses nested lists in an HTML object
into a tree of Python objects. The HTML document represents a flame graph of Java performance
traces: the script is used to convert the traces into a programmatically queryable representation.
Because of the regular structure of the HTML, the script uses Python’s regular expressions and string
functions to extract values rather than a full HTML parser.

3



0
20
40
60
80

None cProfile StatProf Plop PaikanaRace PaikanaSR

R
un

tim
e (

se
c)

Figure 1: Performance of HTML parsing with various profilers. Paikana shows around 5% over-
head over the baseline, which has no profiling enabled. cProfile profiles every call deterministically,
but at the cost of high overhead (almost 50%).

0
20
40

60
80

startswith append strip split match find unaccounted

Pe
rc

en
t o

f T
ot

. 
R

un
tim

e

cProfile StatProf PaikanaRace PaikanaSR

Figure 2: Breakdown of the profile returned by cProfile, statprof, and Paikana. Our method
returns a runtime distribution with a KL divergence of 0.04 compared to cProfile’s.

Our benchmark ran on a 500MB HTML file. Figure 1 shows the end-to-end running time without
any profiling, Paikana with the racing algorithm and the Successive Rejects (SR) algorithm, Python’s
built-in cProfile module, and two open source statistical profilers: plop [17] and statprof [21].
Both statistical profilers were run with their default sampling rate of 1000 Hz. End-to-end, Paikana
reduces the running time during profiling by up to 1.5× when compared to cProfile, and on average
adds 5% overhead compared to execution without profiling.

Although the overhead of our profiler was similar to that of the statistical profilers, we were not
able to obtain accurate profiles from either plop or statprof. The former only reported the total
running time of the full parsing function (as opposed to providing a profile of each subcall). The
latter measured subcalls, but highly overestimated the contribution of the one of the calls. We verified
this by looking at the output of cProfile, manually instrumenting the overestimated call by adding
timing functions around it, and by removing the call and observing the delta in running time. We
suspect that the overestimation occurs because many of the other expensive calls are invoked in a
loop, and statprof seems to undercount the running time of each function within a loop [21]. We
did not observe any improvements or difference in results after increasing the sampling rate of the
profilers to 10000 Hz, but observed a 30% slowdown in execution time.

Figure 2 shows the accuracy of our method by comparing the reported runtime contribution of
each function for cProfile, statprof, and Paikana. Despite profiling for only a fraction of the
program, Paikana produces results that correctly identify bottleneck lines. The runtime distribution is
accurate to a KL divergence of 0.04 compared to cProfile using racing, and 0.05 for SR. In contrast,
statprof misidentifies even the top bottleneck line, and provides a KL divergence of 2.38. Overall,
in our benchmarks, Paikana estimates bottlenecks in the program more accurately than the statistical
profilers we used, but with the same overhead. Paikana also improves performance over the de facto
default Python tracing profiler and returns similar runtime estimations.

5 Conclusion and Future Directions

We believe that machine learning based approaches are a promising avenue for optimizing online
program analysis. For example, in addition to profiling, these methods could also have applications
in efficient program debugging and testing. Our prototype technique is only one possible design for
selecting “interesting” regions of code in an executing program: other data-driven approaches (e.g.,
deep learning) would also be interesting to explore with access to large codebases and production
system deployments.

4



Acknowledgments

This research was supported in part by affiliate members and other supporters of the Stanford DAWN
project—Ant Financial, Facebook, Google, Intel, Microsoft, NEC, Teradata, SAP, and VMware—as
well as DARPA under No. FA8750-17-2-0095 (D3M), NSF CAREER grant CNS-1651570, NSF
Graduate Research Fellowship DGE-1656518, and industrial gifts and support from Toyota Research
Institute, Keysight Technologies, Northrop Grumman, and the Okawa Research Grant. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

References
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with flow and context

sensitive profiling. ACM Sigplan Notices, 32(5):85–96, 1997.

[2] J.-Y. Audibert and S. Bubeck. Best arm identification in multi-armed bandits. In COLT-23th Conference
on Learning Theory-2010, pages 13–p, 2010.

[3] S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

[4] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in finitely-armed and continuous-armed bandits.
2011.

[5] S. Bubeck, T. Wang, and N. Viswanathan. Multiple identifications in multi-armed bandits. In International
Conference on Machine Learning, pages 258–265, 2013.

[6] H. Chen, W.-C. Hsu, J. Lu, P.-C. Yew, and D.-Y. Chen. Dynamic trace selection using performance
monitoring hardware sampling. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, pages 79–90. IEEE Computer Society, 2003.

[7] The Python Profilers. https://docs.python.org/2/library/profile.html.

[8] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos. Profileme: Hardware support
for instruction-level profiling on out-of-order processors. In Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture, pages 292–302. IEEE Computer Society, 1997.

[9] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using adaptive statistical profiling.
In Acm Sigplan Notices, volume 39, pages 156–164. ACM, 2004.

[10] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for low-overhead temporal profiling. In 4th ACM
Workshop on Feedback-Directed and Dynamic Optimization (FDDO-4), pages 117–126, 2001.

[11] P.-L. Loh and S. Nowozin. Faster hoeffding racing: Bernstein races via jackknife estimates. In International
Conference on Algorithmic Learning Theory, pages 203–217. Springer, 2013.

[12] O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search for classification and
function approximation. In Advances in neural information processing systems, pages 59–66, 1994.

[13] Microsoft Common Language Runtime. https://docs.microsoft.com/en-us/dotnet/standard/
clr.

[14] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri. Shadow profiling: Hiding instrumentation costs
with parallelism. In Proceedings of the International Symposium on Code Generation and Optimization,
pages 198–208. IEEE Computer Society, 2007.

[15] Oracle Performance Analyzer. https://www.oracle.com/technetwork/server-storage/
solarisstudio/features/performance-analyzer-2292312.htm://www.oracle.com/
technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.
html.

[16] Perf. https://perf.wiki.kernel.org/index.php/Main_Page.

[17] Plop: Low Overhead Profiling for Python. https://blogs.dropbox.com/tech/2012/07/
plop-low-overhead-profiling-for-python/.

[18] pprofile. https://pypi.org/project/pprofile/.

5

https://docs.python.org/2/library/profile.html
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://www.oracle.com/technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.htm://www.oracle.com/technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.html
https://www.oracle.com/technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.htm://www.oracle.com/technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.html
https://www.oracle.com/technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.htm://www.oracle.com/technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.html
https://www.oracle.com/technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.htm://www.oracle.com/technetwork/server-storage/solarisstudio/features/performance-analyzer-2292312.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://blogs.dropbox.com/tech/2012/07/plop-low-overhead-profiling-for-python/
https://blogs.dropbox.com/tech/2012/07/plop-low-overhead-profiling-for-python/
https://pypi.org/project/pprofile/


[19] Pyflame: Uber engineering’s ptracing profiler for python. https://eng.uber.com/pyflame/.

[20] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a large-scale distributed systems tracing infrastructure. Technical report, Technical
report, Google, Inc, 2010.

[21] statprof. https://pypi.org/project/statprof/.

[22] Intel vTune. https://software.intel.com/en-us/vtune.

6

https://eng.uber.com/pyflame/
https://pypi.org/project/statprof/
https://software.intel.com/en-us/vtune

	Introduction
	Related Work
	Methodology
	Paikana: Choosing Function Calls to Profile
	Alternative Algorithms

	Implementation

	Preliminary Results
	Conclusion and Future Directions

