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Abstract

We propose using machine learning for predicting the future, request arrival se-
quence for similarly sized objects in cache, to simulate Belady’s optimal caching
scheme for small, but critical, in-memory caches. The proposed caching scheme,
PeCC, is a low-cost and reliable scheme that gracefully accounts for errors in
prediction to maximize the hit-rates. We show PeCC is able to bridge the wide gap
in performance between classical online algorithms and Belady’s for small caches.

1 Introduction

Large Internet platform companies and Content Delivery Networks (CDN) like Akamai rely on
having many distributed points of presence (PoP). A large distributed caching platform achieves
low-latency and high throughput for serving web and video content over the public Internet. With
expanding content footprint sizes, machines with larger, but slower drives are deployed close to the
end-users to maximize cache-hit rates for the long-tail. Edge-servers (ES) get deployed with two
levels of cache, an application managed, in-memory cache called Hot Object Cache (HOC) Berger
et al. [2017], and buffer-cache. Both caches offload the on-disk cache, whose read latency could
often be more than the RTT to the end-users, making a hit in the HOC extremely valuable. The
performance of in-memory caches is very crucial for the effectiveness of ES, as they not only help in
improving the response times for objects in cache, but also improve the overall throughput of ES by
reducing a number of expensive, small-object reads to disk Neglia et al. [2017].

Effectively caching objects in HOC is challenging, since the size of the content footprint is typically
very large compared to the size of in-memory cache, making the caching decision by any online
algorithm like LRU to be often wrong. As you can see in the Fig 1 there is wide gap between the
cache-hit rates achievable for the same traffic if we compare an online algorithm like LRU with
Belady’s, Belady [1966] the theoretically optimal algorithm for maximizing cache-hit rates.The
large performance difference between LRU and Belady’s arises because LRU uses past inter-arrival
time as the future inter-arrival time gap, which may or may not be true and has no such information
about the objects it hasn’t previously seen. When compared to Belady’s, which uses the perfect
knowledge of the future, at small cache-sizes, any Caching Decision Error (CDE) can lead to a
cache-miss. CDE is defined as a caching decision that led to a lowered hitrate because of the decision
to cache an object over others. The CDE’s will tend to increase when we observe objects with no
history like “one-hit-wonders”, Maggs and Sitaraman [2015]. One-hit wonders, often tend to occupy
around three quarters of the cache space Maggs and Sitaraman [2015], making them vulnerable to
CDE’s. Different classical caching algorithms like LRU, LFU, S4LRU Huang et al. [2013] have been
proposed to work well over specific traffic profiles, but no single algorithm works well across all
traffic profiles Busari and Williamson [2002], except for Belady’s.

With smaller caches, the problem is more pronounced as we tend to operate in the steeper parts of
footprint descriptor (FD) Sundarrajan et al. [2017] or miss-ratio curves, making them more vulnerable
to CDE’s as compared to when operating in the flatter parts of FD curves. Classical online algorithms
assume each individual object’s future inter-arrival will repeat the previously observed pattern, which
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is not always true Traverso et al. [2013a] and ignore any group dynamics of how related objects tend
to behave similar, over their lifetimes. Such group behavior can be exploited for caching through
predictive schemes. In spite of their known shortcomings, classical caching algorithms and its variants
are quite popular, because of their low overhead and ease of use. Any new algorithm needs to bridge
the gap with Belady’s while outperforming classical algorithms at comparable cost overheads.
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Figure 1: The gains of OPT over LRU decreases
with cache size
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Figure 2: Prediction accuracy of top-k predic-
tions in the proposed ML scheme compared with
a random, class-distribution aware predictor. Fig-
ure shows top k = [1,2,3,4,5] predictions results.
Large improvement in accuracy, from random
predictor, suggesting predictability of request
interarrivals.

2 Previous work

There have been many proposals in the past to effectively cache objects in RAM using online
algorithms in Berger et al. [2017] and Neglia et al. [2017] but they are only able to improve the
hitrates marginally as compared to the wide gap between classical schemes and Belady’s. Until
recently caching schemes using future arrival times were relegated to theoretical exercises, as
predicting future was found to be nearly impossible for general caching, even though using future
arrival time was explored for cpu caches by Jaleel et al. [2010] and Jain and Lin [2016]. Other work
that tries to use any ML techniques for caching Lykouris and Vassilvitskii [2018], Hasslinger et al.
[2018] tries to use the future popularity and advise on what objects to keep, without attempting to
achieve hitrates close to the optimal. Again schemes like Vietri et al. [2018] tries to reduce regrettable
evictions without aiming for the optimal hitrates if the prediction are accurate. Each one of the
proposed solutions could perform well for certain traffic profiles. However, Akamai’s ES network
tends to have a dynamic mix of well known traffic patterns, observable only at the level of individual
customers. The combined traffic pattern at an ES is more complex than any individual pattern and is
constantly changing, rendering any know classical algorithm insufficient for our needs. Belady’s on
the other hand is optimal for all traffic mixes.

Belady’s is not know to be optimal for variable object size caching, but for HOC, capping the max
file size allowed to enter Berger et al. [2017], makes Belady’s a good approximation for optimal.
We exploit a few properties of Belady’s to greatly simplify the prediction scheme; in Belady’s we
don’t need the future popularity, but only need to know 1) the relative, future sequence of requests
for objects, 2) only needs precise sequencing in the time series, where the evictions are happening
and 3) the relative sequencing is only on objects that are currently in cache and not for any new
object in the future. We use these simplified requirements for Belady’s and exploit the similarity in
behaviour among objects in traffic classes to predict the relative sequencing in our caching scheme
called Prediction-error Correcting Cache (PeCC).
Even a well trained ML systems is bounded by the Bayes error rate. The rate of overall errors drops
significantly when we consider top k predictions in a multi-class classification problem Lapin et al.
[2015]. PeCC will need use the top k predictions to cache for long enough, but not more, to reduce
CDE’s resulting from prediction errors.
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3 Prediction

Popularity of individual content on the Internet is well studied Szabo and Huberman [2010],
Figueiredo et al. [2011], Szabo and Huberman [2010] and is known to be fairly predictable. In
addition to per-customer level similarity, content exhibits similar behaviour across a traffic class
Sundarrajan et al. [2017], which is used as a unit of load-balancing at Akamai. The ES tends have
a dynamic mix of well studied traffic patterns like Zipf or lognormal. But a complex overlapping
of these traffic patterns makes caching hard. However, well designed machine learning models can
easily learn individual patterns in the mix, and make correct prediction of request sequence. The
traffic behavior of an object, among other things, is dictated by its content class, request’s position in
the object’s life-cycle and the traffic on the machine. The similarity in inter-arrival gap among objects
can be due to a combination of different object features, which can be learned by using per-object
features.

Dataset and Feature Details Each request for an object has a large set of features associated with
it. Out of all such features, we use a few hundred of them and categorize them into 3 main types: 1.
Static object features like size, content-type, etc 2. Dynamic Features that include Age, inter-arrival
history, time of request, etc and 3. Traffic Features like traffic mix rates seen on machine and features
related to end-users. These features can be continuous, ordinal, categorical, or time-series. We design
a neural network which can learn end-to-end for such a variety of input types. The output of the
neural network is a quantized next-arrival time (τq) of a request. This makes the learning task a
ordinal-category classification problem.

Neural Network Design The neural network architecture has three major initial layer stacks to
processes the continuous, categorical and time-series features available in our feature set.
Embedding Layer Stack: Embedding layer architecture can map elements from a set to a vectors,
popularly used in Natural Language Processing task Gal and Ghahramani [2016]. We use this function
approximation idea to map our categorical features, such as owner, content-type, time of day, etc into
a Euclidean space of 100 dimensions. The learning of this mapping happens with the supervised
learning of the rest of the network, unlike in the language modeling tasks. Time-Series Layer Stack:
The Time-Series layer stack consist of multiple Long short-term memory (LSTM) layers Graves
et al. [2013] for each time-series feature. The internal states of the LSTM nodes are fed to the fully
connected layer of the network. Continuous-Feature Layer Stack: This module of the network takes
all the continuous features of our system as input. It consist of few dense ReLU Nair and Hinton
[2010] followed by Dropout layers Srivastava et al. [2014]. The output of all 3 layer stacks is fed to
the Fully-connected part of the network, which consists of combination of dense PReLU He et al.
[2015] and batch-normalization layers Ioffe and Szegedy [2015].
Loss function and Output The output for our task is a ordinal variable with many categories. Hence,
normal cross-entropy loss does not yield good results because of its intrinsic inability to force ordering
among output classes. To address this problem, we design network with loss functions to penalize
every pair of true class and predicted class differently, hence enforcing an ordering among the classes.
To obtain the final output we use an ensemble Rokach [2010] of all the trained models.

4 PeCC Design

As discussed in the previous section, we can achieve close to optimal performance by predicting
future arrival time using a Deep learning system and evicting the objects furthest in the future (FiF).
Instead of fully sequencing the next request for objects in cache, we relax our ML based prediction
system to produce request’s next arrival time as quantized bins (τq). This converts the prediction
problem from a regression to a multi-class classification. The quantization bin size and the max
quantization level are chosen based on the traffic profile. The size of individual bin, decreases as
the the traffic rate increases and vice-versa. The task of prediction engine is to predict the τq for
each object in the cache. However the predictions can be wrong in three way: Prediction error 1:
τpredq >> τ trueq Prediction error 2:τpredq << τ trueq Prediction error 3: |τpredq − τ trueq | < δ, for
some small δ. Since errors in web traffic predictions are an inescapable, we try to reduces the impact
of prediction errors on caching performance by reducing the likelihood of them becoming CDE’s.
We achieve this by designing a NN with a caching scheme that produces and uses multiple unreliable
predictions with decreasing levels of confidence to cache and evict objects. The prediction system
provides two estimate of the expected next interarrival time τPred1

q and τPred2
q . However, both the
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predictions can be wrong in one of three prediction errors types as discussed before. This results in
multiple error combination cases for the pair of τPred1

q and τPred2
q . To recover from such error cases,

we define and categorize errors by their impact on the caching performance and setup sub-caches to
recover from these errors. Given the traffic and cache size, let T be the max interarrival observed for
the objects getting hits in the cache. The objects with τq < T will have high chances of getting hit in
the cache, while objects with τq > T has lower chances of getting hit. Thus T gives us an estimate
of whether an object of some future inter-arrival time, can get-in and get hit in the cache. To make
ideal caching decisions, using FiF to evict, we keep objects with τPred1

q < τFIF
q in the cache while

keep out the objects with τPred1
q > τFIF

q . But since the τPred1
q predictions might have errors, we

keep objects with predicted τPred1
q > τFIF

q and τPred2
q < τFIF

q in a separate limited cache segment,
called Popular error cache (PEC).The objects with τPred1

q < τFIF
q , which don’t get a hit in the cache

for τPred1
q are marked as expired objects. Such expired objects with τPred2

q < τFIF
q goes from the

main cache to expired cache (EC) segment. The share of each cache segment, out total cache space,
is estimated by observing percentage of prediction error 1 and prediction error 2 in the traffic. Fig 3
describes the overall flow of objects within different cache segments.

Figure 3: PeCC design

Trace Gain % = Hpecc−lru/Hopt−lru

MC 1 48.26%
MC 2 52.62%

Table 1: Gain % in the hits by PeCC from theo-
retically max possible.

5 Results

In this section, we present the prediction result obtained from our proposed network architecture. We
then discuss the improvements in caching performance observed through content aware predictive
caching. For this study, we collect request logs from a set of randomly selected representative
machines on the Akamai network for over a week. We train on 3-4 day’s of data and test the
prediction and the caching performance for the last few days.

The quantized next request inter-arrival time prediction task is a challenging ordinal multi-class
classification problem because the output classes can be a few thousands in number. The prediction
accuracy results from five ES traces are shown in Fig 2. The accuracy numbers are compared to
a random, class-distribution aware, predictor. The results clearly corroborate that the traffic is not
totally random and models can be trained to predict traffic request sequences. However, some traffic
traces are more complex than other and hence the prediction accuracy that can be achieved varies
from machine to machine. The final caching decision task still benefits from the next inter-arrival
prediction.

In order to evaluate the improvements in cache performance we consider the cache hits obtained by
LRU (current online caching systems), Belady’s (offline optimal caching), and proposed PeCC. Let
Hlru, Hopt, Hpecc be the hits in cache obtained by the LRU, Belady’s and PeCC respectively. The
theoretical possible gain in hits from LRU from OPT is

Hopt−lru = Hopt −Hlru (1)

Similarly, the gain in hits from LRU to PeCC is

Hpecc−lru = Hpecc −Hlru (2)

From our experiments, we observe a substantial increase in hits by PeCC from LRU. Table 1 show
the percentage of hit recovered by PeCC as a percentage of theoretically possible recoverable hits by
OPT from LRU. The results show large gains in the total hit by PeCC which LRU fails to acquire.
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6 Conclusion

In this work, we successfully demonstrate that modern machine learning systems can be built for
content aware caching which can significantly improve the caching performance obtained by classical
online caching algorithms and other heuristic based variants.

In spite of the known shortcomings, classical caching algorithms and its variants are quite popular,
because they have very low overhead and generally work well when the traffic satisfies the algorithm’s
underlying assumptions. However, with the advancements in practical ML systems, need for better
cache-hit rates, and increasing long-tail content footprint, a novel approach of content aware caching
using ML is ideally suited to improve current caching systems.

For the next step, we strive to improve the performance of PeCC by building a more complex
model that accounts for complex cache hierarchies in the network and is robust over drastic traffic
changes. At the same time, the learning cost involved in training models can be drastically reduced
by exploiting the transfer learning opportunities we have observed across several machine in a region.
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