
NetBouncer: Active Device and Link Failure Localization
in Data Center Networks

Cheng Tan1, Ze Jin2, Chuanxiong Guo3, Tianrong Zhang4, Haitao Wu5, Karl Deng4, Dongming Bi4, and Dong Xiang4

1New York University,
2
Cornell University, 3Bytedance, 4Microsoft, 5Google

Abstract
The availability of data center services is jeopardized by vari-
ous network incidents. One of the biggest challenges for net-
work incident handling is to accurately localize the failures,
among millions of servers and tens of thousands of network
devices. In this paper, we propose NetBouncer, a failure local-
ization system that leverages the IP-in-IP technique to actively
probe paths in a data center network. NetBouncer provides a
complete failure localization framework which is capable of
detecting both device and link failures. It further introduces
an algorithm for high accuracy link failure inference that is
resilient to real-world data inconsistency by integrating both
our troubleshooting domain knowledge and machine learning
techniques. NetBouncer has been deployed in Microsoft
Azure’s data centers for three years. And in practice, it pro-
duced no false positives and only a few false negatives so far.

1 Introduction

As many critical services have been hosted on the cloud
(e.g., search, IaaS-based VMs, and databases), enormous
data centers have been built which contain millions of
machines and tens of thousands of network devices. In such
a large-scale data center network, failures and incidents
are inevitable, including routing misconfigurations, link
flaps, network device hardware failures, and network device
software bugs [19, 20, 22, 23, 28, 45]. As the foundation
of network troubleshooting, failure localization becomes
essential for maintaining a highly available data center.

Localizing network failures in a large-scale data center is
challenging. Given that nowadays data centers have highly
duplicated paths between any two end-hosts, it is unclear to
the end-hosts which links or devices should be blamed when
a failure happens (e.g., TCP retransmits). And, because of
the Equal-Cost Multi-Path (ECMP) routing protocol, even
routers are unaware of the whole routing path of a packet.

Moreover, recent research [23, 27, 28] reveals that gray
failures, which are partial or subtle malfunctions, are preva-
lent within data centers. They cause the major availability
breakdowns and performance anomalies in cloud environ-
ments [28]. Different from fail-stop failures, gray failures
drop packets probabilistically, and hence cannot be detected
by simply evaluating connectivity.

In order to localize failures and be readily deployable
in a production data center, a failure localization system

needs to satisfy three key requirements, which previous
systems [1, 16, 18, 23, 37, 44, 46] fail to meet simultaneously.

First, as for detecting gray failures, the failure localization
system needs an end-host’s perspective. Gray failures have
been characterized as “differential observability” [28], mean-
ing that the failures are perceived differently by end-hosts and
other network entities (e.g., switches). Therefore, traditional
monitoring systems, which query switches for packet loss
(e.g., SNMP, NetFlow), are unable to observe gray failures.

Second, to be readily deployable in practice, the monitor-
ing system should be compatible with commodity hardware,
the existing software stack and networking protocols. Pre-
vious systems which need special hardware support [37],
substantial modification on the hypervisor [40] or tweak
standard bits on network packets [46] are unable to be readily
deployed in production data centers.

Third, localizing failures should be precise and accurate, in
terms of pinpointing failures in fine-granularity (i.e., towards
links and devices) and incurring few false positives or nega-
tives. Some prior systems, like Pingmesh [23] and NetNO-
RAD [1], can only pinpoint failures in a region, which needs
extra efforts to discover the actual errors. And others [16, 18,
44] incur numerous false positives and false negatives when
exposed to gray failures and real-world data inconsistency.

In this paper, we introduce NetBouncer, an active probing
system that detects device failures and infers link failures
from end-to-end probing data. NetBouncer satisfies the
previous requirements by actively sending probing packets
from the servers, which doesn’t need any modification in the
network or underlying software stack. In order to localize
failures accurately, NetBouncer provides a complete failure
localization framework targeting data center networks, which
incorporates real-world observations and troubleshooting
domain knowledge. In particular, NetBouncer introduces:

• An efficient and compatible path probing method (§3).
We design a probing method called packet bouncing to
probe a designated path. It is built on top of the IP-in-IP
technique [7, 47], which has been implemented in ASIC
of modern commodity switches. Hence, packet bouncing
is compatible to current data center networks and efficient
without consuming switch CPU cycles.

• A probing plan which is able to distinguish device failures
and is proved to be link-identifiable (§4). A probing
plan is a set of paths which will be probed. Based on
an observation that the vast majority of the network is

Spine

Leaf

ToR

ServersH5

T2

L1

S2

ControllerNetwork
topology Processor Link/Device

failures

1

2

3

… …

Path	probing	data

……

Probing	plan

Figure 1: NetBouncer’s workflow: 1©, the controller designs
a probing plan and sends it to all the probing servers. 2©, the
servers follow the plan to probe the paths in the network. 3©,
the processor collects the probing data and infers the faulty
devices and links.

healthy, we conceive a probing plan which reveals the
device failures. And, by separating the faulty devices
from the network, we prove that the remaining network is
link-identifiable, meaning that the status of each link can
be uniquely identified from the end-to-end path probing.

• A link failure inference algorithm against real-world data
inconsistency (§5). A link-identifiable probing is not
sufficient for pinpointing failures due to real-world data
inconsistency. We formulate an optimization problem
which incorporates our troubleshooting domain knowl-
edge, and thus is resilient to the data inconsistency. And,
by leveraging the characteristic of the network, we propose
an efficient algorithm to infer link failures by solving this
optimization problem.

NetBouncer has been implemented and deployed (§8) in
Microsoft Azure for three years, and it has detected many net-
work failures overlooked by traditional monitoring systems.

2 NetBouncer overview

NetBouncer is an active probing system which infers the
device and link failures from the path probing data. Net-
Bouncer’s workflow is depicted in Figure 1, which is divided
into three phases as follows.
Probing plan design (1© in Figure 1). NetBouncer has one
central controller which produces a probing plan based on the
network topology. A probing plan is a set of paths that would
be probed within one probing epoch. Usually, the probing
plan remains unchanged. Yet, for cases such as topology
changes or probing frequency adjustments, the controller
would update the probing plan.

An eligible probing plan should be link-identifiable,
meaning that the probing paths should cover all links and

more importantly, provide enough information to determine
the status of every single link. However, the constraints in
developing real-world systems make it challenging to design
a proper probing plan (§4.2).

Based on an observation that the vast majority of the
links in a network is healthy, we prove the sufficient probing
theorem (§4.3) which guarantees that NetBouncer’s probing
plan is link-identifiable in a Clos network when at least one
healthy path crosses each switch.
Efficient path probing via IP-in-IP (2© in Figure 1). Based
on the probing plan, the servers send probing packets through
the network. The packet’s routing path (e.g., H5 → T2 →
L1 → S2 → L1 → T2 → H5 in Figure 1) is designated using
the IP-in-IP technique (§3.1). After each probing epoch, the
servers upload their probing data (i.e., the number of packets
sent and received on each path) to NetBouncer’s processor.

NetBouncer needs a path probing scheme that can explic-
itly identify paths and imposes negligible overheads. Because
the data center network is a performance-sensitive environ-
ment, even a small throughput decrease or latency increase
can be a problem [30]. NetBouncer leverages the hardware
feature in modern switches – the IP-in-IP [7, 47] technique –
to explicitly probe paths with low cost.
Failure inference from path measurements (3© in Fig-
ure 1). The processor collects the probing data and runs
an algorithm to infer the device and link failures (§4.4,
§5.2). The results are then sent to the operators for further
troubleshooting and failure processing.

The main challenge of inferring failures comes from the
data inconsistency in the data center environment (§5.1).
We’ve analyzed some real-world cases and encoded our trou-
bleshooting domain knowledge into a specialized quadratic
regularization term (§5.2). On top of that, we develop an
efficient algorithm based on coordinate descent (CD) [53]
which leverages the sparse characteristic of links in all paths.
And the algorithm is more than one order of magnitude faster
than off-the-shelf SGD solutions.
NetBouncer’s targets and limitations. NetBouncer targets
non-transient (no shorter than the interval between two prob-
ings), packet-loss network incidents. Though its expertise
is on detecting gray failures which would be overlooked by
traditional monitoring systems, any other packet-loss related
incidents are also under its radar.

Admittedly, there are cases where NetBouncer fails to de-
tect (see false negatives in §8). We discuss NetBouncer’s lim-
itations in more details in §9.

3 Path probing via packet bouncing

In a data center environment, the probing scheme of a trou-
bleshooting system needs to satisfy two main requirements:
first, the probing scheme should be able to pinpoint the rout-
ing path of probing packets, because a data center network
provides many duplicated paths between two end-hosts.

Second, the probing scheme should consume little network
resources, in terms of switch CPUs and network bandwidth.
This is especially important under heavy workloads when
failures are more likely to happen.

Conventional probing tools fail to meet both requirements
simultaneously. In short, ping-based probing is unable to pin-
point the routing path; Tracert consumes switch CPUs, which
might adversely impact the reliability and manageability of
the network.

NetBouncer designs and implements an approach called
packet bouncing, which takes advantage of the IP-in-IP tech-
nique to accomplish both requirements. Other source routing
schemes [15, 21, 26, 29] might also be plausible, but require
much more deployment effort. NetBouncer uses probes from
end-hosts. With programmable switches, it is possible to de-
ploy probing agents at switches and probe each link individu-
ally. NetBouncer chooses end-host based approach as most of
the switches in our data centers are still non-programmable.
Nonetheless, NetBouncer’s failure localization algorithm ap-
plies to switch-based approaches as well.

3.1 IP-in-IP basics
IP-in-IP [7, 47] is an IP tunneling protocol that encapsulates
one IP packet in another IP packet. This protocol has been
implemented in the modern commodity switches (in ASIC)
which allows devising a specific probing path without
involving the CPUs of switches.

Server Switch1 Switch2

dst:	Switch1

payload
dst:	Switch2

payload
dst:	Switch2

payload
IP-in-IP
packet

NetBouncer utilizes this IP-in-IP technique to explicitly
probe one path by encapsulating the desired destination in the
nested IP packets. In the above abstract example, NetBouncer
is able to probe a certain path (Server→Switch1→Switch2)
by encapsulating the final destination (Switch2) in the inner
IP header and the intermediate hop (Switch1) in the outer IP
header. The switch that receives the IP-in-IP packets (i.e.,
Switch1) would decapsulate the outer IP header and forward
the packet to its next destination.

Indeed, some legacy or low-end switches might not support
IP-in-IP in hardware. We do consider this challenge and
design NetBouncer as only requiring the top-layer switches
(i.e., core switches) having such support (details in §4.3). We
believe that the core switches in a modern data center would
be high-end with such support.

3.2 Packet bouncing
On top of the IP-in-IP technique, NetBouncer adopts a
path probing strategy called packet bouncing. Namely, the

probing server chooses a switch as its destination and inquires
the switch to bounce the packet back. As an example in
Figure 1, a server (e.g., H5) sends a probing packet to a switch
(e.g., S2). The probing path contains the route from the server
to the switch (H5→ T2→ L1→ S2) and its “bouncing back”
route (S2→L1→T2→H5).

In NetBouncer’s target network, the Clos network [2, 48],
packet bouncing simplifies NetBouncer’s model, design and
implementation, due to the following three reasons.

(1) It minimizes the number of IP-in-IP headers Net-
Bouncer has to prepare. The packet bouncing only needs
to prepare one IP-in-IP header which leads to a simple
implementation. Given a Clos network, only one path exists
from a server to a upper-layer switch (also observed by [46]).
Hence, preparing an IP-in-IP packet (to a upper-layer switch)
only needs one outer IP header (with its destination as that
switch), which remarkably simplifies the implementation.

(2) Links are evaluated bidirectionally which leads to a
simpler model. When packet bouncing is in use, all the links
are evaluated bidirectionally. This simplifies NetBouncer’s
model, allowing the network graph to be undirected (§ 4.1).
Indeed, this bidirectional evaluation cannot differentiate
which direction of a link is dropping packets. However, in
practice, this is not an issue because a link is problematic
whichever direction drops packets.

(3) The sender and receiver are on the same server, which
makes NetBouncer robust against server failures. Because of
bouncing, the probing data for a certain path is preserved by
one server, which is both the sender and the receiver. Thus,
the probing data are “all or nothing”. Otherwise, if the senders
and receivers are different servers, NetBouncer has to con-
sider the failures of senders (fewer sent packets, causing false
negatives) or receivers (fewer received packets, causing false
positives) or both, which makes the failure handling more
complicated, especially in a large-scale distributed system.

4 Probing plan and device failure detection

This section proposes NetBouncer’s failure localization
model (§4.1) and introduces the challenges of probing path
selection (§4.2) which motivates the probing plan design
(§4.3) and device failure detection algorithm (§4.4).

We assume in this section that the success probability for
each link is stable (i.e., remain the same among different
measurements) which will be relaxed in the next section (§5).

4.1 Underlying model
We define a data center network as an undirected graph whose
vertices are devices (e.g., servers, switches and routers) and
edges are physical links. Each link has a success probability,
which is denoted by xi for the ith link (linki).

A path is a finite sequence of links which connect a
sequence of devices. In NetBouncer, a probing path is

H2 H3

L0

T1

L1

x1 x2

x3 x4

Figure 2: An unsolvable example. Switch T1 cannot bounce
packets. And, x1, x2, x3, x4 represent the success probabilities
of link H2-T1, H3-T1, T1-L0 and T1-L1 respectively.

the sequence of links traversed by a probing packet from
its sender to receiver. A path success probability is the
probability of successfully delivering one packet through
all links within this path. We use y j to indicate the success
probability of the jth path (path j).

NetBouncer’s model assumes that dropping packets on dif-
ferent links are independent events, which has been justified
in earlier work [17, 18, 42] (also see §9 for more discussion).
Thus, the probability of successfully delivering one packet
through a path can be described as

y j = ∏
i: linki∈path j

xi,∀ j, (1)

where the success probability of path j is the product of its
link success probabilities.

In the context of failure localization, the path success
probabilities (y js) can be measured by sending probing
packets through the paths, and our ultimate goal is to pinpoint
the faulty links (whose success probabilities xis are below a
certain threshold) and faulty devices (whose associated links
are faulty).

4.2 Real-world challenges for path selection
In order to localize failures, the first question we need to
answer is: which paths should be probed so that all the links
are identifiable? This link identifiability problem can be
formalized as follows.

Given a network graph G and all its possible paths U , how
to construct a set A ⊆ U , so that the set of equations {y j =

∏linki∈path j
xi | path j∈A} has a unique solution for all xis.

Whether the above equations have a unique solution has
been well-studied in the literature of linear algebra (by taking
logarithm at both sides of Equation 1, it becomes linear).
However, in reality, not all paths can be probed. The probing
path must start and end at servers, since most switches cannot
issue packets (most of the switches are non-programmable).
Moreover, the bouncing scheme further restricts the sender
and receiver to be the same server (§3.2).

Under such constraints, we notice that if any switch cannot
“bounce” packets (i.e., doesn’t support IP-in-IP), there is no

unique solution. As an example, Figure 2 depicts a simple
two-tier Clos network with switch T1 (the shaded switch)
unable to bounce packets. As a result, there doesn’t exist a
unique solution in the circled subgraph, which is illustrated
as follows.

Suppose we probe all the possible paths in the circled
subgraph (i.e., H2-T1-L0, H2-T1-L1, H3-T1-L0 and H3-T1-L1)
and obtain four equations as

y{H2-T1-L0}=x1×x3, y{H2-T1-L1}=x1×x4,

y{H3-T1-L0}=x2×x3, y{H3-T1-L1}=x2×x4.

Intuitively, since one of the four equations is redundant
(y{H2-T1-L0} × y{H3-T1-L1} = y{H2-T1-L1} × yH{H3-T1-L0}), the
number of effective equations is smaller than the number
of variables. Thus, there doesn’t exist a unique solution in
general.

Unfortunately, cases similar to the above example occur
in a data center network for many reasons. On the one hand,
some switches (especially ToR switches) may not support the
IP-in-IP forwarding, so that they cannot bounce packets; On
the other hand, delayed uploading and failures are common in
a large-scale system. Within one epoch, the probing data from
a certain switch may fail to be uploaded. More importantly,
bouncing every single switch is expensive and thus not
favorable in terms of the huge number of probing paths.

4.3 Link-identifiable probing plan
In view of the challenges when choosing the paths, finding a
probing plan that has a unique solution is generally difficult.
However, in the real-world scenario, we observe that the vast
majority of the links in a network are well-behaved and thus
most of the paths are healthy.

Motivated by this observation, we come up with the suffi-
cient probing theorem, which proves that when the network
is healthy (at least one healthy path passes each switch), a
simple probing plan (probing all paths from the servers to the
top-layer switches) is link-identifiable. By link-identifiable,
we mean that this probing plan can guarantee a unique
solution (i.e., a set of xis) to the path selection problem (§4.2)
which is consistent with our measurements (i.e., all the y js).
Therefore, this plan is used as NetBouncer’s probing plan.

Theorem 1. (sufficient probing theorem). In a Clos network
with k layers of switches (k ≥ 1), by probing all paths from
the servers to the top-layer switches, we can uniquely infer
the link success probabilities from the measured path success
probabilities, if and only if at least one path with success prob-
ability 1 passes each switch.

The intuition behind the proof of this theorem (see full
version proof in appendix §A) is that if the success probability
of a path is 1, all the links included by this path should also
have success probabilities 1, considering the constraint
xi∈ [0,1],∀i.

Furthermore, from the proof, we can see that this theorem
can be easily extended to all the layered networks. In fact, the
Clos network is a special case of a general layered network,
where switches on layer n only connect to switches on layers
n−1 and n+1, switches on the same layer do not connect to
each other, and servers connect only to the first-layer switches.

Most of the probing plan designs in the literature [11, 12,
36, 39, 44, 54] target how to minimize the number of probing
paths. Reducing the probing path number, however, is not
a goal of NetBouncer. In fact, redundant paths through one
link can be considered as validations to each other. These
validations in turn increase NetBouncer’s accuracy.

4.4 Device failure detection

Using NetBouncer’s probing plan, Theorem 1 provides a
sufficient and necessary condition (i.e., at least one path with
success probability 1 passes each switch) for the existence of
a unique solution. By checking whether the above condition
holds for each switch, we can split a Clos network into a
solvable part (having a unique solution) and an unsolvable
part (no unique solution).

The unsolvable part would be a collection of switches
which fail to have even one good path across it. Since
NetBouncer probes many paths (usually hundreds to thou-
sands) across each switch, one switch is highly suspicious
if it doesn’t even have one good path through it. Hence,
NetBouncer reports these switches as faulty devices to the
operators.

Theoretically, the reported device can be a false positive
if it happens to be surrounded by bad devices. However, this
case is extremely rare since one switch usually connects to
many devices. Thus, we are highly confident that the reported
devices are faulty.

To sum up, the servers first probe paths based on the
probing plan in §4.3. Then the processor collects all the
probing data from the servers, and extracts the faulty devices
(unsolvable part) from the network. Based on Theorem 1,
the remaining subgraph has a unique solution for each link’s
success probability. Next the processor runs the link failure
inference algorithm described in the next section (§5.2), and
infers the faulty links. Finally, the processor reports the faulty
devices and links to the operators. The algorithm running on
NetBouncer’s processor is depicted in Figure 3.

5 Link failure inference

The previous section describes NetBouncer’s probing plan
and algorithm for localizing device failures. Yet, the last
jigsaw piece of NetBouncer’s algorithm (Figure 3, line 6) is
still missing: how can one infer the link probabilities xis from
the end-to-end path measurements y js?

Define:
devs : all devices
Y : path→ [0,1] // a map from a path to its success probability

1: procedure PROCESSOR()
2: (1) Collect probing data from agents as Y
3: (2) badDev← DETECTBADDEVICES(Y) // line 9
4: // eliminate the unsolvable subgraph
5: (3) Y←Y \{pathr | pathr passes any device in badDev}
6: (4) badLink← DETECTBADLINKS(Y) // in Figure 5, §5.2
7: return badDev,badLink
8:
9: procedure DETECTBADDEVICES(Y)

10: badDev←{}
11: for devp in devs :
12: goodPath← False
13: for all pathq passes devp :
14: If Y [pathq]=1 then goodPath← True; break

15: If not goodPath then badDev+=devp

16: return badDev

Figure 3: Algorithm running on NetBouncer processor.

In practice, the above inference problem cannot be re-
solved simply using linear algebra or least squares, because
of the real-world data inconsistency.

5.1 Data inconsistency

In the real-world data center environment, the measurement
data are usually inconsistent or even conflicting. Such data
inconsistency derives from two main reasons:

• Imperfect measurement. The data center network is huge
and its state changes constantly. Due to its gigantic size, all
the paths cannot be probed simultaneously. Thus, different
path probings may reflect different instantaneous states
of the network. Moreover, as the probing sample size is
limited (hundreds of packets per path), the measurements
on each path are coarse-grained.

• Accidental packet loss. In a large-scale network, accidental
errors are inevitable, which can happen on any layer (e.g.,
hypervisor, OS, TCP/IP library) of the execution stack as
a result of bugs, misconfigurations, and failures.

These two reasons lead to inconsistency in the path probing
data and further to misreporting (mostly false positives, re-
porting a well-behaved link as a faulty one). The reason why
accidental packet loss introduces false positives is straightfor-
ward. As it incurs dropping packets which no link or device
should be responsible for, such packets might be attributed to
the non-lossy links which produces false positives.

As for the imperfect measurement, the reason why it causes
false positives is that the inference results might overfit the
imperfect measurements. We demonstrate this problem by a
real-world example (Figure 4).

x1=?

x3=?

x2=1

x5=1
x4=1

y1=0.43 y2=0.41 y3=0.39 y4=1

1

1

1

2

2

2

3

3

3

4

4

4

Figure 4: A false positive example of the least square solution
overfitting imperfect measurement data. The circled number
on the probing packets indicates which path this packet
passes.

In Figure 4, we have priori knowledge that some links
are good (x2 = x4 = x5 = 1) , and we want to infer the link
success probabilities x1 and x3 from observed path success
probabilities (y1 = 0.43, y2 = 0.41, y3 = 0.39, and y4 = 1).
Using the least squares approach we obtain the estimates
x1 = 0.406 and x3 = 0.965, which indicates that both links
are dropping packets. However, the faulty link with respect
to x3, unfortunately, is a false positive. Such false positive
is caused by the imperfect measurements of y1,y2,y3 as their
observed success probabilities are slightly different. In this
case, the least square results overfit the imperfect data when
minimizing the fitting error.

To mitigate the above false positives, we introduce a
specialized regularization term and propose a regularized
estimator for the latent factor model to resolve the failure
localization problem, which is described in the next section.

5.2 NetBouncer’s latent factor model

We have formulated a latent factor model for the link failure
inference problem. Under the constraint xi ∈ [0,1],∀i, the
objective function to be minimized when estimating the
latent link probabilities xis is the sum of squared errors plus
a regularization term as

minimize ∑
j
(y j− ∏

i:linki∈path j

xi)
2+λ∑

i
xi(1−xi)

subject to 0≤xi≤1,∀i
(2)

Specialized regularization. In the model, we have designed
a specialized regularization term ∑ixi(1−xi) which incorpo-
rates our troubleshooting domain knowledge to reduce false
positives described in §5.1.

There are two desired characteristics of this regularization
term: (a), it has a two-direction penalty; (b), because of the
quadratic term, the closer to 1 the greater the slope.

10 x
(a)

10 x
(b)

The characteristic (a) separates the bad links and the good
links, as it tends to move the link probability toward 0 or 1.
The insight behind this is that the regularization term tends
to “pull” the good links to be better, while “push” the bad
links to be worse, while the product of link probabilities
will stay approximately the same. It helps resolve the false
positive cases (e.g., Figure 4 in §5.1) where the imperfect
measurement involves a bad link (x1) and a good link (x3).

The characteristic (b) mitigates the accidental packet loss
and noisy measurements, which helps endorse most links
(good) and assign the blame to only a small number of links
(bad). The intuition of this characteristic is that (i) most of the
links are good, and (ii) the larger the success probability (xi
closer to 1) the more likely the loss is an accidental loss or an
inaccurate/noisy measurement. In response, when one xi is
closer to 1, the regularization term provides stronger strength
(greater slope) to “pull” this xi to be 1 (i.e., a good link).

As for the standard penalties, some (e.g., L1 and L2)
only promote one-direction shrinkage; Other two-direction
penalties (e.g., entropy) are inefficient in terms of analytical
solution and numerical optimization (our regularization term
leads to a neat analytical solution and an associated efficient
minimization algorithm).
Non-convex representation. In our model (Equation 2), we
use a non-convex representation which, in practice, has better
performance than its corresponding convex representation.

From the theoretical perspective, convexity is a desired
property that guarantees the convergence to the global
optimal solution. The convex representation can be obtained
by applying a logarithm transformation to Equation 2 (similar
model used by Netscope[18]). It converts the multiplication
equations to linear equations and results in a convex problem.

However, our experiments (§6.4) show that the non-convex
representation has better performance. The reason is that
the convex representation suffers from a scale change and
skewed log function (e.g., machine epsilon, no log(0) exists),
and thus does not work well numerically in practice.

5.3 Algorithm for link failure inference

Given the above optimization problem, we adopt coordinate
descent (CD), an optimization method, to solve the link fail-
ure inference problem. This algorithm is depicted in Figure 5
(the pseudocode and complexity analysis are in appendix §B).

Coordinate descent leverages the sparse characteristic of
the real-world network which results in an efficient algorithm.
By sparsity, we mean that, in a data center network, each link
is included by only a few paths comparing to the whole path

Define:
X←all xi, Y←all yi
f (X ,Y)← ∑

j
(y j − ∏

i:linki∈path j

xi)
2+ λ∑

i
xi(1−xi)

1: procedure DETECTBADLINKS(Y)
2: X← INITLINKPROBABILITY(Y) // line 12
3: L0← f (X ,Y) // initial value for target function f
4: for iteration k=1,···, MaxLoop :
5: for each xi in X :
6: xi←argmin

xi

f (X ,Y)

7: project xi to [0,1]
8: Lk← f (X ,Y)
9: If Lk−1−Lk <ε then break the loop

10: return {(i,xi)|xi≤bad link threshold}
11:
12: procedure INITLINKPROBABILITY(Y)
13: X←{}
14: for linki in links :
15: // initialize link success probability
16: xi← avg({y j | linki∈path j})
17: return X

Figure 5: Coordinate Descent for regularized least squares
with constraints. xi is the success probability of linki; y j is the
success probability of path j; ε is the threshold of path error;
λ is the tuning parameter of regularization. X is the set of all
xis which changes when xis are updated.

set. Consequently, for updating the success probability of
a link, it is more efficient to leverage the information of the
paths relevant to this specific link, which is exactly how CD
works.
Why not SGD? Stochastic Gradient Descent (SGD) [52] is a
classical and universal optimization algorithm. Nevertheless,
it fails to meet our throughput requirement due to the huge
amount of data (hundreds GB per hour) generated by the
real-world data centers (we’ve tried to improve SGD to our
best, such as lazy-update optimization [8, 32, 38]). By unable
to meet our requirement, we mean that SGD cannot produce
the failure links within a certain time budget (in practice,
5min for one probing epoch, see §7.2). Our experiments
show that CD converges more than one order of magnitude
faster than SGD (§6.4).

There are two reasons why SGD is much slower. First,
SGD iterates over all the paths, and during each loop for a par-
ticular path, all link probabilities are updated simultaneously
due to the regularization term. Such updating does not take
advantage of the path’s sparse representation (only a few links
are related to one path) and includes all the links no matter
whether they are on the paths or not, and thus is not efficient.

Second, SGD suffers from the boundary constraints. When
the link probability is supposed to cross the boundary 0 or 1
according to its current update, we have to clip it and conse-
quently lose information about its gradient.

6 Simulation studies

We run simulations to demonstrate the following: that Net-
Bouncer’s probing plan is sufficient (§6.2); that NetBouncer’s
device failure detection is effective (§6.3); that NetBouncer’s
design choices are justified (§6.4), and that NetBouncer
performs well comparing with other designs (§6.5).

6.1 Simulation setup
We build our simulation on top of a python trace generator
whose outputs are path probing data consumed by Net-
Bouncer’s processor. The trace generator simulates the path
probings on a standard three-layer Clos network [2, 48]
including 2.8 thousand switches (48-port switches), 27.6
thousand servers and 82.9 thousand links.

We follow the settings from previous work [18, 41], while
change the specific loss rates to fit the data center environ-
ment 1: for faulty links/devices, the packet drop probabilities
are between 0.02 and 1; and for non-lossy links, the packet
drop probabilities are between 0 and 0.001 (to simulate noise).
In addition, we randomly choose 10 devices as faulty devices.

For each probing path, 100 packets are sent. Whether
a packet will be successfully transmitted is determined by
generating a random number uniformly between 0 and 1. Net-
Bouncer considers a link good if its estimated success prob-
ability is greater than 0.999 (because the noise rate is 0.001).
All the experiment results are the averages of 10 executions.

6.2 Probing plan
We perform both NetBouncer’s probing plan (§4.3) and a
hop-by-hop probing plan in this experiment. Hop-by-hop
probing plan is a probing plan that sends packets from every
server to every relevant switch. Because of its exhausted
probing, hop-by-hop probing plan is able to identify all the
links, but with very high cost.

The results of hop-by-hop probing plan and NetBouncer’s
probing plan are listed in columns “Hop-by-hop” and “Net-
Bouncer” of Figure 6 respectively. NetBouncer’s probing
plan achieves the same performance as hop-by-hop probing
(there are minor differences with 10% faulty links, which
come from the randomness of faulty link selection), while it
remarkably reduces the number of paths to be probed.

6.3 Device failure detection
In §4.2, we demonstrate that if all the paths through a specific
device are dropping packets, we cannot uniquely infer the
link success probabilities (no unique solution exists), which
motivates our device failure detection algorithm (§4.4). To

1 We change the packet drop probability of any faulty link from [0.05,1]
to [0.02,1], and that of any non-lossy link from [0,0.002] to [0,0.001], which
makes the failure detection more challenging.

Faulty Hop-by-hop w/o DFD Convex L1 (λ=0.5) L1 (λ=1) L1 (λ=2) NetBouncer (λ=1)
link% #FN #FP #FN #FP #FN #FP #FN #FP Err #FN #FP Err #FN #FP Err #FN #FP Err
0.1% 0 0 135.3 0 0 46.9 0 48.5 0.01 0 0 0.03 0.3 0 0.14 0 0 0.01
1% 0 0 164.0 0 1.9 522.7 0 81.1 0.07 0 0 0.32 1.1 0 1.41 0 0 0.11
10% 0.6 0 123.3 0 257.6 4.1k 0 695.7 0.91 0.1 0.6 3.80 25.6 0 15.88 0.3 0.2 1.43

Figure 6: Simulation experiment results on variants of NetBouncer with setup in §6.1. “Faulty link%” indicates the proportion
of faulty links over all links. “#FN” and “#FP” indicates the number of false negatives and false positives. “Err” is the estimation
error (the smaller the better, see the definition in §6.4). As for the results, “Hop-by-hop” represents the experiment using
hop-by-hop probing (§6.2); “w/o DFD” represents the results without faulty device detection (§6.3); “Convex” indicates the
experiment on convex representation; “L1” represents the experiments using standard regularization with different parameters
(§6.4). And, the final column “NetBouncer” is the performance of NetBouncer.

understand the necessity of device failure detection, we
evaluate NetBouncer without its device failure detection
(DFD) under different faulty link ratios. Column “w/o DFD”
in Figure 6 shows the results.

Without the help of faulty device detection, NetBouncer
produces many false negatives. There are two main reasons:
First, without faulty device detection, the links associated
with the faulty devices have an infinite number of solutions
(§4.2). Hence, NetBouncer may end up with an arbitrary
solution. Second, the regularization in NetBouncer tends
to aggregate the path failures and assign the blames to a
small number of links, which is reasonable for link failure
detection, but not for faulty device cases, because all the links
connected to a faulty device are faulty and should be blamed.

6.4 NetBouncer design choices

To verify NetBouncer’s design choices in §5.2 and §5.3, we
compare NetBouncer to its variants with alternative choices.
Convex vs. non-convex. We implement the convex version
of NetBouncer with similar regularization by applying a
logarithmic transformation to Equation 2, and design an
algorithm similar2 to Figure 5 to solve this convex problem.

From the results in column “Convex” of Figure 6, we can
see that the convex representation has both false positives
and false negatives, which mainly derive from its skewed log
scale and boundary clipping. For example, when x=0, log(x)
is invalid, so we have to assume x=1e-8 as an approximation.
L1 vs. specialized regularization. We now evaluate the
effectiveness of NetBouncer’s specialized regularization
by comparing it with a standard regularization L1. The
L1 regularization term is defined as −∑i xi [18]. In order
to compare the estimation accuracy, we use the squared
estimation error of link probabilities as a metric, which is
defined as ∑i(xi − x′i)

2 (xi is the success probability from
“ground truth” and x′i is its estimate). The smaller the error
metric (“Err” in Figure 6), the more accurate the estimation.

The results using the L1 regularization with different λ s are
presented in Figure 6. From the experiments, we find that the

2There are slight differences for the boundary handling due to the log
scale of the convex model.

OptMethod Learning rate #round Time(s)
CD – 4 14.8

SGD-lazy 0.001 145 513.3
SGD-lazy 0.005 45 157.5
SGD-lazy 0.01 161 569.9

Figure 7: Comparison of CD and SGD. The faulty link% of
the workload is 0.1% and λ is 1. To help SGD converge, we
have relaxed the convergence condition for SGD (ε =0.0001
for CD, ε = 0.001 for SGD). “#round” is the number of
rounds to converge. “Time(s)” is the total time of execution
in seconds.

specialized regularization obtains similar numbers of false
discoveries to L1 under the best tuning parameter λ in terms
of failure diagnosis, while it achieves much lower estimation
error when fitting link probabilities.

SGD vs. CD. Although SGD is broadly used as an off-the-
shelf method, we adopt CD, a more efficient method for
NetBouncer based on the sparse structure of our problem.
To make a fair comparison, we implement an SGD with the
lazy-update optimization [8, 32, 38], which is more efficient
than a naive implementation.

Figure 7 summarizes the performance of CD and SGD. It
shows that CD converges much faster than SGD. The time
spent on each round of CD and SGD are similar, but CD
converges in significantly fewer rounds, which validates our
analysis.

Regularization parameter λ . The results of NetBouncer
are affected by the tuning parameter λ in the regularization
affects. Intuitively, λ balances the fitting error and false
discoveries. A large λ may trigger false negatives, while a
small λ may leave false positives.

To illustrate how the results change as λ varies, we run
NetBouncer with different λ values on the network with 1%
faulty links. The numbers of false discoveries are shown
in Figure 8 where the x-axis is in log-scale. The results
demonstrate the trade-off between false positives and false
negatives from choosing λ .

 0

 5000

 10000

 15000

 20000

 25000

0.
1

0.
15 0.

2
0.

3
0.

5
0.

7 1 2 3 5 10
 0

 40

 80

 120

 160

N
u
m

b
er

 o
f

F
P

N
u
m

b
er

 o
f

F
N

value of lambda (under 1% faulty links)

FN
FP

Figure 8: Number of false positives and false negatives for
different λ .

Faulty link% 0.1% 1% 10%
#FN #FP #FN #FP #FN #FP

NetBouncer 0 0 0 0 0.3 0.2
deTector (0.6) 187.5 6.0k 215.5 7.2k 204.0 22.8k
deTector (0.9) 204.5 0.7 191.5 0.4 208.0 21.7
NetScope (0.1) 0 9.1k 3.0 10.8k 167.5 12.6k
NetScope (1) 0.3 43.7 10.2 395.5 319.5 3.8k
NetScope (10) 28.7 6.3 291.5 86.7 2.4k 1.2k
KDD14 7.8 21.0 76.6 433.2 213.8 3.0k

Figure 9: Compare NetBouncer with existing schemes. The
number in parentheses of “deTector” is a tuning parameter to
filter false positives (hit ratio in paper[44]). The number in
parentheses of “NetScope” is its regularization parameter (ω
in paper[18]).

6.5 Comparison with existing systems
In this section, we compare NetBouncer with three existing
systems: deTector [44], NetScope [18], and KDD14 [25].
Note that we only compare the failure inference part on the
processor (step 3© in Figure 1), that is inferring failures from
the path measurement data. To the best of our knowledge,
deTector is the state-of-the-art heuristic algorithm after a long
line of work [16, 31, 43]. NetScope improves the previous
work [41, 49] and takes data inconsistency into account.
KDD14 applies statistical techniques to data center failure
localization. They are the most relevant network diagnosis
algorithms, and thus the most appropriate benchmarks for
NetBouncer.

The original NetScope is designed for troubleshooting on
Internet which is an underdetermined system, whereas data
center network is an overdetermined system. As a result,
we extend the NetScope algorithm following its core idea
– “L1-norm minimization with non-negativity constraints”
(§III.D in [18]), and apply it to the logarithmic transformation
of Equation 1. For KDD14, we assume that the routing path
of each packet is known, which is an improvement over the
original version.

Using the same setup in §6.1, we run experiments on
NetBouncer as well as deTector, NetScope and KDD14 with
various faulty link ratios, and present the results in Figure 9.

As a greedy algorithm, deTector is designed to blame the
smallest number of links, so that it incurs false negatives

when there are faulty devices. On the other hand, deTector
also incurs false positives due to noise in the data. Lastly, it
uses a tuning parameter (i.e., hit ratio in [44]) to filter false
positives, which may result in false negatives as well. This
is a trade-off requiring domain knowledge and experiences
from the network operators.

Similar to the implementation of NetBouncer’s convex
representation, NetScope encounters numerical problems
mainly due to its logarithmic representation. KDD14 pro-
duces both false positives and false negatives resulting from
its assumption that there is at most one faulty link among
all the paths between two servers, which is unrealistic for a
large-scale data center network.

7 Implementation and evaluation

7.1 Implementation
Controller. The NetBouncer Controller is a central place
to decide how the agents probe the whole network. It takes
the network topology as input and generates a probing plan
for servers. The controller has multiple replicas for fault
tolerance.
Agent. The NetBouncer Agent runs on servers. It fetches its
probing plan from the Controller, which contains the paths to
be probed. For each path, the probing plan contains the re-
lated parameters including the number of packets to send, the
packet size, the UDP source destination port range, the probe
frequency, the TTL and ToS values, etc. For each probed
path, the Agent generates a record which contains the path, the
packet length, the total number of packets sent, the number of
packet drops, the RTTs at different percentiles. The CPU and
traffic overhead of the agents are both negligible in practice.
Processor. The NetBouncer Processor has two parts. A
front-end which is responsible for collecting the records
from the NetBouncer Agents, and a back-end Data processor
which runs the algorithm. The front-end and back-end
run on the same physical server. For load-balance and geo
fault tolerance considerations, we run multiple NetBouncer
Processors. Each Processor is responsible for a set of data
center regions. Within a geolocation, we run four NetBouncer
Processor instances behind a software load-balancer VIP.
One instance acts as the master and runs the NetBouncer
algorithm, the other three are slaves. The VIP is configured in
a way so that only the master receives records from the agents.
Result verification and visualization. After localizing fail-
ures in the network, NetBouncer provides a result verification
tool which the operators can use to issue probing packets
on-demand. These on-demand verification packets are sent
from the same Agents as the NetBouncer service.

This tool also shows the packet drop history of links for
visualization. One failure example is illustrated in Figure 10.
It reveals the packet drop history of a link detected by
NetBouncer. Users can click the “Quick probe” button to

Figure 10: Result verification and visualization tool.

launch probes on-demand for verification. As the figure
shows, the packet drop rate of the link changed from 60%
to 100% at around 10:00. This is because the NetBouncer
report triggered our network repairing service, which in turn
shutdown this link to mitigate the incident. The link will be
manually inspected, cleaned up, and restored later.

With the help of this verification tool, we gain more con-
fidence in the performance of NetBouncer. For the cases we
have verified, we did not experience any false positives. How-
ever, NetBouncer is not false negative-free, as discussed in §9.
Probing epoch. Probing epoch, the interval that NetBouncer
does one run of failure inference algorithm, is a critical pa-
rameter of the system design. One deceptive intuition is that a
shorter probing epoch always leads to faster failure detection.
However, in reality, too frequent failure inferences may result
in either less confident results or bursts of probing traffic.

From our experiences, determining the probing epoch is
a three-way trade-off among inference accuracy, probing
resource cost, and failure localization speed. On one hand,
with fixed probing frequency, inferring failures too often
ends up with less probing data for each inference, and hence
may harm the accuracy. On the other hand, by increasing the
probing frequency on servers, the accuracy is able to keep
unchanged. Nevertheless, it may cause probing traffic bursts,
which may introduce network congestion, ramping up the
risk of instability of the whole network.

Considering the previous tradeoffs, NetBouncer chooses 5
minutes as one probing epoch. Yet, it is plausible to sacrifice
the other two factors to significantly shorten the probing time.

7.2 Data processor runtime evaluation
In this section, we evaluate the performance of Data Proces-
sor, which is executed on a machine having Intel Xeon E5
2.4GHz CPU with 24 cores (48 logical cores) and 128GB
memory. The operating system is Windows Server 2016.

We have around 30 regions in total. The Data Processor
uses one thread to process the data for one region. Data
processing in the Data Processor is therefore naturally
parallelized.

We run NetBouncer on one-hour real-world data trace
on November 5, 2016, which is 130GB in size and covers
tens of global data centers (other hours have similar results).
In production, NetBouncer detects the faulty links in the

 0

 20

 40

 60

1-5
6-10

11-15

16-20

21-25

26-30

31-35

36-40

41-45

46-50

51-55

56-60

R
u
n
ti

m
e
 (

s)

Time window in minutes

Figure 11: NetBouncer running time on real-world data.

hopping window of every 5 minutes. We follow the same
detection frequency in this experiment.

As we show in Figure 11, the min, average, and max
running times are 30.0s, 37.3s, and 56.0s, respectively. The
max processing time happened at window 21-25, in which
our detection algorithm converged after 9 iterations, whereas
most of the rest windows finished in 4 iterations. We did
the investigation and found that the additional iterations
are caused by a few “hard-to-solve” faulty links, when the
faulty links appear in the same local sub-graph. In that case,
our algorithm needs to go back and forth with several more
iterations to converge. In all the cases, the time-to-detection
(TTD) for failures is within 60 seconds.

We also study the time spent on each of the stages. On
average, NetBouncer’s algorithm with regularization (§5.2)
costs 54.9% of the CPU time; other stages – faulty device
detection (§4.4), data cleaning and data structure setup – take
12.4%, 23.8% and 8.9%, respectively. NetBouncer consumes
about 15-20 GB memory during the processing which is only
a small portion of the 128G memory of the server.

Overall, a single NetBouncer Processor instance can
handle multiple regions with tens of thousands of switches
and more than one million network links, with spare capacity
for future growth.

8 Deployment experiences

NetBouncer has been running in Microsoft Azure for three
years. In this section, we’re going to share our deployment
experiences and some representative failures NetBouncer
detected.
NetBouncer deployment, before vs. after. Before Net-
Bouncer was deployed, gray failures could last hours to days.
Since no clue was provided, operators had to pinpoint the
failure via trial and error in a large region of the network
based on their troubleshooting experiences.

After NetBouncer went online, it has successfully reduced
the detection time from hours to minutes, and further shorten-
ing is also possible (see the probing epoch in §7.1). Moreover,
NetBouncer greatly deepened our understanding of the rea-
sons why packet drops happen, including silent packet drops,
packet blackholes, link congestion, link flapping, BGP rout-
ing flapping, switch unplanned reboot, etc. For example, it

Figure 12: The packet drop probability detected by Net-
Bouncer. This is a silent packet drop case.

once caught a case where a switch was periodically changing
its state between normal and 100% packet drops. It turned
out that the switch was rebooted continuously by a buggy
firmware upgrade procedure.

Next, we present three representative cases in produc-
tion detected by NetBouncer, which otherwise would be
extremely difficult or tricky to locate.
Case 1: spine router gray failure. The first case is one of the
most challenging scenarios that motivated the development of
NetBouncer: gray failures, where switches silently drop pack-
ets without any signals. We had an incident where a spine
switch was dropping packets silently, because of an issue in
one of this switch’s linecard hardware. Many of our customers
experienced packet drops and latency increases. The wide
impact was also detected by our end-to-end latency service
Pingmesh [23]. It was clear that one or more spine switches
were dropping packets. But we could not tell which one.

We obtained the link loss rate history of all the spine links
using NetBouncer. Figure 12 shows the packet drop history of
the lossy link. We found that this link was constantly dropping
packets with around 15% packet drop probability. It dropped
packets without differentiation, as both the “Normal” and
“Scavenger” traffic encountered the same dropping rate (the
two curves in Figure 12 overlap with each other). In our net-
work, Normal traffic is given priority over Scavenger traffic.
Case 2: polarized traffic. In the second case, NetBouncer
caught a network congestion scenario and also helped
identify the root-cause of the incident: a switch firmware bug,
which polarized the traffic load onto a single link. Figure 13
shows the packet drop probability measured by NetBouncer.
Among a huge number of packet drops, we observed that
the packets on Scavenger traffic was dropped at a probability
around 35%, but the Normal traffic was not affected. Since
NetBouncer directly told us the congested link, detection
became trivial. We then mitigated this issue by rekeying the
ECMP hash function and solved the problem.
Case 3: miscounting TTL. Time to live (TTL) in an IP packet
is supposed to be decremented by one through each switch.
However, NetBouncer has discovered that when an IP packet
passes though a certain set of switches, its TTL is decremented
by two. This issue manifests as a “false positive” by misclassi-
fying affected good links as bad links, which is in fact caused

Figure 13: The packet drop probability detected by Net-
Bouncer, caused by link polarization.

by an internal switch fireware bug. Though this miscounting
TTL bug hasn’t caused harmful consequences on the actual
data traffic yet. Nevertheless, such a hidden issue will raise
severe latent risk for service reliability and cause huge confu-
sion for troubleshooting.
False negatives and false positives. In practice, we ran into
several false negative cases. In one case, we once ran into
a DHCP booting failure, in which some servers could send
out the DHCP DISCOVER packets, but could not receive
the responding DHCP OFFER packets from the DHCP
server. NetBouncer did not detect such DHCP packet drops.
Resorting to packet capturing, we could identify that the
switches did not drop the DHCP OFFER packets, and this
problem was caused by the NIC.

In another case, we encountered an incident due to a
misconfigured switch ACL, which resulted in packet drops
for a very limited set of IP addresses. Since NetBouncer
scanned a wide range of IP addresses, so the signal detected
by NetBouncer was weak. Similarly, NetBouncer cannot
help when some firewall rules were (wrongly) applied to
certain applications.

NetBouncer in theory is not false positive-free. However,
NetBouncer did not produce false positives in production
so far, because of our specialized regularization (§5.2) and a
strict criteria (1% packet drops) for reducing false alarms.

9 Discussions

NetBouncer’s limitations. NetBouncer has two major
limitations. First, NetBouncer makes an assumption that the
probing packets experience the same failures as real applica-
tions, which may not hold in all cases (as we shown in §8). Our
future work is to systematically investigate the false negative
conditions and improve the coverage of our probing packets.

Second, theoretically, NetBouncer cannot guarantee zero
false positives or zero false negatives. Nevertheless, this is
ubiquitous to all real-world monitoring systems, since the
measurement data cannot be perfectly accurate. In practice,
NetBouncer has produced no false positives and only a few
false negatives (both confirmed by the network operators) so
far.

Theory vs. practice. Theoretically, NetBouncer’s probing
plan is proved to be link-identifiable (§4.3). However, in
practice, such nice theory property does not guarantee the
results to be false positive free or false negative free, which
drove us to seek help from machine learning approaches
(latent factor model, regularization and CD).

Yet, we argue that the theory result, though not sufficient,
is necessary for solving our problem in reality. Without the
guidance of the sufficient probing theorem, a chosen probing
plan might not be link-identifiable, thus the outputs of the
machine learning approach can be arbitrary.
Does the independent assumption hold? In NetBouncer’s
model (§4.1), we assume that the failures are independent.
Our experiences reveal that this assumption holds for a large
number of scenarios including random packet drops due to
cable/fiber bit errors, infrequently hardware gray failures
e.g., bit flips in hardware memory, and packet drops caused
by software Heisenbugs. Those scenarios share the same
characteristic that they are hard to detect and localize. Once
detected, they are typically easy to mitigate (by shutting
down the problematic links or rebooting the faulty devices).
How does NetBouncer handle congestion packet loss? As
stated in overview (§2), NetBouncer targets non-transient
failures. NetBouncer treats persistent congestion as failure
because persistent congestion affects users. NetBouncer fil-
ters out transient congestion since it uses minute-level failure
detection interval.

10 Related work
Network tomography. Compared with original network
tomography approaches [5, 6, 9, 13, 14, 17, 18, 51] which
target the Internet-like networks, NetBouncer has different
challenges. First, the topology of a data center network is
known, but it requires to design a link-identifiable probing
plan. Second, the standard of a well-behaving link in the In-
ternet (failure probability<2% in [18]) is way lower than that
in a data center network (usually, failure probability <0.1%).

As for the link failure inference algorithm, Tomo [16] and
deTector [44] use heuristic algorithms for failure inference.
However, these approaches may generate false results
due to their heuristic nature. NetScope [18] (as well as
NetQuest [49] and LIA [41]) takes data inconsistency into
account. NetBouncer also uses a similar approach (i.e., reg-
ularization), but in addition we encode our troubleshooting
domain knowledge into the model which results in better
performance.

What differentiates NetBouncer from other tomography
systems is that NetBouncer provides a complete framework
targeting data center networks, including probing plan
design (§4.3), device failure detection (§4.4) and link failure
inference (§5.2) against real-world data inconsistency.
Other failure localization approaches. SNMP and Open-
Flow are widely used in nowadays data centers. However,

recent research [23, 28] shows that these tools cannot detect
gray failures, a type of failure that causes availability break-
downs and performance anomalies in cloud environment.

Herodotou et al. [25] use statistical data mining techniques
for data center failure localization. They propose a prob-
abilistic path model since it does not control the path of a
probing packet. Whereas, NetBouncer controls the routing
paths of the probing packets. Furthermore, they assume there
is only one link failure in a path, which leads to false positives
and false negatives as we have shown in §6.5.

Sherlock [4] assumes that only few failures exist in the
system. It then enumerates all the possible combinations to
find the best match. The running time grows exponentially
along with number of failures, which is unacceptable for a
large-scale network.

Pingmesh [23], NetSonar [55] and NetNORAD [1] use a
TCP or UDP agent for end-to-end reachability and traceroute
variants (Tcptracert or fbtracert) for path probes. However,
the ICMP packets generated from the probes need to be han-
dled by the switch CPUs, hence need to be carefully managed.
In addition, NetSonar uses Sherlock [4] algorithm for failure
detection, which cannot support many simultaneous failures.

Passive probing [46] uses core switches to tag IDs in the
DSCP or TTL field of IP header for path pinpointing. How-
ever, DSCP and TTL fields, which are commonly used for
QoS, might not be available.

NetPoirot [3] and [10] leverage decision trees for failure
diagnosis. The data sources are from end-host application and
TCP logs. These approaches can tell whether the problem is
from the network or not, but they do not work for our scenario
as they do not differentiate ECMP paths.

Network troubleshooting. Several systems [24, 50, 56] have
been proposed for network troubleshooting and debugging.
These systems typically need to capture packets or collect
packet summaries, which are complementary to NetBouncer.

Other troubleshooting systems need either non-trivial
modification on software stack [33, 34, 35, 40], or hardware
support [37], which cannot be transparently applied to current
data centers in production.

11 Conclusion

In this paper, we propose the design and implementation
of NetBouncer, an active probing system which infers the
device and link failures from the path probing data. We
demonstrate that NetBouncer’s probing plan design, device
failure detection, and link failure inference perform well
in practice. NetBouncer has been running in Microsoft
Azure’s data centers for three years, and has helped mitigate
numerous network incidents.

References
[1] ADAMS, A., LAPUKHOV, P., AND ZENG, J. H. Net-

norad: Troubleshooting networks via end-to-end probing.
https://code.facebook.com/posts/1534350660228025/

netnorad-troubleshooting-networks-via

-end-to-end-probing/, Febrary 2016.

[2] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, com-
modity data center network architecture. In ACM SIGCOMM (2008).

[3] ARZANI, B., CIRACI, S., LOO, B. T., SCHUSTER, A., AND
OUTHRED, G. Taking the blame game out of data centers operations
with netpoirot. In ACM SIGCOMM (2016).

[4] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S., MALTZ,
D. A., AND ZHANG, M. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In ACM SIGCOMM
(2007).

[5] BATSAKIS, A., MALIK, T., AND TERZIS, A. Practical passive lossy
link inference. In Passive and Active Measurement Workshop (2005).

[6] CáCERES, R., DUFIELD, N. G., HOROWITZ, J., AND TOWSLEY,
D. Multicast-based inference of network-internal loss characteristics.
IEEE Trans. Inform. Theory 45 (November 1999).

[7] CAO, J., XIA, R., YANG, P., GUO, C., LU, G., YUAN, L., ZHENG,
Y., WU, H., XIONG, Y., AND MALTZ, D. Per-packet load-balanced,
low-latency routing for clos-based data center networks. In ACM
Conference on emerging Networking EXperiments and Technologies
(CoNEXT) (2013).

[8] CARPENTER, B. Lazy sparse stochastic gradient descent for regular-
ized multinomial logistic regression. Alias-i, Inc., Tech. Rep (2008),
1–20.

[9] CASTRO, R., COATES, M., LIANG, G., NOWAK, R., AND YU, B.
Network tomography: Recent developments. Statistical Science 19
(Auguest 2004).

[10] CHEN, M., ZHENG, A. X., LLOYD, J., JORDAN, M. I., AND
BREWER, E. Failure diagnosis using decision trees. In Proceedings
of the First International Conference on Autonomic Computing (2004).

[11] CHEN, Y., BINDEL, D., AND KATZ, R. H. Tomography-based overlay
network monitoring. In ACM IMC (2003).

[12] CHUA, D. B., KOLACZYK, E. D., AND CROVELLA, M. Efficient
monitoring of end-to-end network properties. In IEEE International
Conference on Computer Communications (INFOCOM) (2005).

[13] COATES, M., AND NOWAK, R. Network Loss Inference Using Unicast
End-to-End Measurement. In Proc.ITC Conf IP Traffic, Modeling and
Management (2000).

[14] CUNHA, I., TEIXEIRA, R., FEAMSTER, N., AND DIOT, C. Measure-
ment methods for fast and accurate blackhole identification with binary
tomography. In ACM IMC (2009).

[15] DE GHEIN, L. MPLS fundamentals. Cisco Press, 2016.

[16] DHAMDHERE, A., TEIXEIRA, R., DOVROLIS, C., AND DIOT, C.
Netdiagnoser: Troubleshooting network unreachabilities using end-to-
end probes and routing data. In ACM Conference on emerging Net-
working EXperiments and Technologies (CoNEXT) (2007).

[17] DUFFIELD, N. Network tomography of binary network performance
characteristics. IEEE Transactions on Information Theory 52 (Dec
2006).

[18] GHITA, D., NGUYEN, H., KURANT, M., ARGYRAKI, K., AND THI-
RAN, P. Netscope: Practical network loss tomography. In IEEE In-
ternational Conference on Computer Communications (INFOCOM)
(2010).

[19] GILL, P., JAIN, N., AND NAGAPPAN, N. Understanding network fail-
ures in data centers: Measurement, analysis, and implications. In ACM
SIGCOMM (2011).

[20] GOVINDAN, R., MINEI, I., KALLAHALL, M., KOLEY, B., AND VAH-
DAT, A. Evolve or die: High-availability design principles drawn from
google’s network infrastructure. In ACM SIGCOMM (2016).

[21] GUILBAUD, N., AND CARTLIDGE, R. Localizing packet loss
in a large complex network (ppt). https://www.nanog.org/

meetings/nanog57/presentations/Tuesday/tues.general.

GuilbaudCartlidge.Topology.7.pdf.

[22] GUNAWI, H. S., HAO, M., SUMINTO, R. O., LAKSONO, A., SATRIA,
A. D., ADITYATAMA, J., AND ELIAZAR, K. J. Why does the cloud
stop computing? lessons from hundreds of service outages. In SoCC
(2016).

[23] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ,
D., LIU, Z., WANG, V., PANG, B., CHEN, H., ET AL. Pingmesh:
A large-scale system for data center network latency measurement and
analysis. In ACM SIGCOMM (2015).

[24] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES, D., AND
MCKEOWN, N. I know what your packet did last hop: Using packet
histories to troubleshoot networks. In Symposium on Networked Sys-
tems Design and Implementation (NSDI) (2014).

[25] HERODOTOU, H., DING, B., BALAKRISHNAN, S., OUTHRED, G.,
AND FITTER, P. Scalable near real-time failure localization of data
center networks. In KDD (2014).

[26] HU, S., CHEN, K., WU, H., BAI, W., LAN, C., WANG, H., ZHAO,
H., AND GUO, C. Explicit path control in commodity data centers: De-
sign and applications. IEEE/ACM Transactions on Networking (2016).

[27] HUANG, P., GUO, C., LORCH, J. R., ZHOU, L., AND DANG, Y.
Capturing and enhancing in situ system observability for failure detec-
tion. In Symposium on Operating Systems Design and Implementation
(OSDI) (2018).

[28] HUANG, P., GUO, C., ZHOU, L., LORCH, J. R., DANG, Y., CHIN-
TALAPATI, M., AND YAO, R. Gray failure: The Achilles’ heel of
cloud-scale systems. In Workshop on Hot Topics in Operating Systems
(HotOS) (2017).

[29] JYOTHI, S. A., DONG, M., AND GODFREY, P. Towards a flexible data
center fabric with source routing. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Research (2015).

[30] KOHAVI, R., AND LONGBOTHAM, R. Online experiments: Lessons
learned. IEEE Computer (September 2007).

[31] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN,
A. C. Ip fault localization via risk modeling. In Symposium on Net-
worked Systems Design and Implementation (NSDI) (2005).

[32] LANGFORD, J., LI, L., AND ZHANG, T. Sparse online learning via
truncated gradient. Journal of Machine Learning Research 10, Mar
(2009), 777–801.

[33] LENERS, J. B., GUPTA, T., AGUILERA, M. K., AND WALFISH, M.
Improving availability in distributed systems with failure informers. In
Symposium on Networked Systems Design and Implementation (NSDI)
(2013).

[34] LENERS, J. B., GUPTA, T., AGUILERA, M. K., AND WALFISH, M.
Taming uncertainty in distributed systems with help from the network.
In European Conference on Computer Systems (EuroSys) (2015).

[35] LENERS, J. B., WU, H., HUNG, W.-L., AGUILERA, M. K., AND
WALFISH, M. Detecting failures in distributed systems with the falcon
spy network. In ACM Symposium on Operating Systems Principles
(SOSP) (2011).

[36] LI, H., GAO, Y., DONG, W., AND CHEN, C. Taming both predictable
and unpredictable link failures for network tomography. In Proceedings
of the ACM Turing 50th Celebration Conference-China (2017).

[37] LI, Y., MIAO, R., KIM, C., AND YU, M. Lossradar: Fast detection of
lost packets in data center networks. In ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT) (2016).

https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via
https://code.facebook.com/posts/1534350660228025/netnorad-troubleshooting-networks-via
-end-to-end-probing/
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/tues.general.GuilbaudCartlidge.Topology.7.pdf
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/tues.general.GuilbaudCartlidge.Topology.7.pdf
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/tues.general.GuilbaudCartlidge.Topology.7.pdf

[38] LIPTON, Z. C., AND ELKAN, C. Efficient elastic net regularization for
sparse linear models. arXiv preprint arXiv:1505.06449 (2015).

[39] MA, L., HE, T., LEUNG, K. K., SWAMI, A., AND TOWSLEY, D.
Identifiability of link metrics based on end-to-end path measurements.
In Proceedings of the 2013 conference on Internet measurement con-
ference (2013).

[40] MOSHREF, M., YU, M., GOVINDAN, R., AND VAHDAT, A. Trumpet:
Timely and precise triggers in data centers. In ACM SIGCOMM (2016).

[41] NGUYEN, H. X., AND THIRAN, P. Network loss inference with second
order statistics of end-to-end flows. In ACM SIGCOMM (2007).

[42] PADMANBHAN, V., QIU, L., AND WANG, H. Server-based inference
of internet performance. In In Proc. of IEEE INFOCOM (2003).

[43] PATI, Y. C., REZAIIFAR, R., AND KRISHNAPRASAD, P. S. Orthog-
onal matching pursuit: Recursive function approximation with appli-
cations to wavelet decomposition. In Signals, Systems and Computers,
1993. 1993 Conference Record of The Twenty-Seventh Asilomar Con-
ference on (1993).

[44] PENG, Y., YANG, J., WU, C., GUO, C., HU, C., AND LI, Z. detec-
tor: a topology-aware monitoring system for data center networks. In
USENIX Annual Technical Conference (2017).

[45] POTHARAJU, R., AND JAIN, N. When the network crumbles: An
empirical study of cloud network failures and their impact on services.
In SoCC (2013).

[46] ROY, A., ZENG, H., BAGGA, J., AND SNOEREN, A. C. Passive re-
altime datacenter fault detection and localization. In Symposium on
Networked Systems Design and Implementation (NSDI) (2017).

[47] SIMPSON, W. IP in IP Tunneling, 1995. RFC 1853.

[48] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,
A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., ET AL. Jupiter rising: A decade of clos topologies and cen-
tralized control in google’s datacenter network. In ACM SIGCOMM
(2015).

[49] SONG, H. H., QIU, L., AND ZHANG, Y. Netquest: a flexible frame-
work for large-scale network measurement. In ACM SIGMETRICS
Performance Evaluation Review (2006).

[50] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacen-
ter network debugging with pathdump. In Symposium on Operating
Systems Design and Implementation (OSDI) (2016).

[51] VARDI, Y. Netowrk tomography: Estimating source-destination traffic
intensities from link data. Journal of the American Statistical Associa-
tion 91 (March 1996).

[52] WIKIPEDIA. Stochastic gradient descent. https://en.wikipedia.
org/wiki/Stochastic_gradient_descent.

[53] WRIGHT, S. J. Coordinate descent algorithms. Mathematical Pro-
gramming 151, 1 (2015), 3–34.

[54] ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N.
Automatic test packet generation. In ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT) (2012).

[55] ZENG, H., MAHAJAN, R., MCKEOWN, N., VARGHESE, G., YUAN,
L., AND ZHANG, M. Measuring and troubleshooting large operational
multipath networks with gray box testing. Tech. Rep. MSR-TR-2015-
55, Microsoft Research, 2015.

[56] ZHU, Y., AND ET AL. Packet-level telemetry in large datacenter net-
works. In ACM SIGCOMM (2015).

A Proof of sufficient probing theorem

Proof. Sufficient condition: For any link with its success
probability x0, we consider the only two possibilities:

(1) If a path with success probability 1 includes this link,
then x0=1.

(2) Otherwise, the condition guarantees that at least one
link with success probability 1 connects the upper (lower)
node of this link to a node in the upper (lower) layer. Accord-
ing to the way we probe, at least one path includes this link
so that all the other links in this path have success probability
1. Thus, we will find an equation x0 = y0 in the path success
probability equations.
Necessary condition: Assume the condition does not hold,
then there exists at least one node so that all of its links have
success probability not 1. Therefore, there exists a subgraph
including this node connected with n nodes in the upper layer
and m nodes in the lower layer, which is separable from the
rest of the whole graph.

Given that the success probabilities of all the other links
in the rest of the whole graph are known, we try to solve this
subgraph and consider the only three possibilities:

(1) If all subpath probabilities are not 0 in this subgraph,
then we can transform the path success probability equations
of this subgraph to the linear equations

logyi,n+ j = logxi+logxn+ j,1≤ i≤n;1≤ j≤m

where the rank of corresponding matrix is n + m − 1, less
than the number of linear equations. As a result, no unique
solution is available.

(2) If some but not all subpath probabilities are 0 in this
subgraph, we only focus on the nonzero equations, which do
not have a unique solution due to the redundancy either.

(3) If all subpath probabilities are 0 in this subgraph, we
simply cannot distinguish the solution where all links are 0 or
just some are 0.

To sum up, the solution is not unique in the subgraph even
when the rest of the whole graph is solved. Therefore, it is
impossible to get a unique solution for the whole graph.

B Failure inference algorithm and complexity
analysis

Algorithm 1 describes the full version of NetBouncer’s fail-
ure inference algorithm, Coordinate Descent for regularized
least squares with constraints.

We analyze the complexity of Algorithm 1 as follows.
Assume that each link is included by C paths on average.
The time complexity is O(CM) for link initialization. In each
iteration, the time complexity is O(CM) for link updating,
and O(N +M) for convergence checking. Suppose there are
K iterations until convergence, the total time complexity is
O(CM +KCM +KN +KM) = O(KCM +KN). The space
complexity is O(N) for all path rates, and O(M) for all link
rates, and O(N) for the mapping from the paths to the links
they include, and O(CM) for the mapping from the links to

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Algorithm 1 Coordinate Descent for regularized least
squares with constraints.

Require: N = number of paths, M = number of links, y j =
sample success probability of path j, n j = sample size of
path j, K = maximal number of iterations, ε = threshold
of path error, λ = tuning parameter of regularization.

1: initialize x(0)i = ∑
j:xi∈y j

(n jy j)/ ∑
j:xi∈y j

n j, i∈ [1,M]

2: for iteration k=1,···,K do
3: x(k)i =x(k−1)

i , i∈ [1,M]
4: for link i=1,···,M do
5: R(k)

i =2 ∑
j:xi∈y j

(∏
`: 6̀=i,x`∈y j

x(k)`)2−2λ

6: S(k)i =2 ∑
j:xi∈y j

(y j ∏
`: 6̀=i,x`∈y j

x(k)`)−λ

7: T (k)
i =S(k)i /R(k)

i

8: if R(k)
i =0 then

9: if S(k)i >0 then x(k)i =1
10: else x(k)i =0
11: else if R(k)

i >0 then
12: if T (k)

i >1 then x(k)i =1
13: else if T (k)

i <0 then x(k)i =0
14: else x(k)i =T (k)

i
15: else
16: if T (k)

i >1/2 then x(k)i =0
17: else x(k)i =1
18: L(k)=∑

j
(y j− ∏

i:xi∈y j

x(k)i)2+λ∑
i
x(k)i (1−x(k)i)

19: If L(k−1)−L(k)<ε then break the loop
return {x(k)i |i∈ [1,M]}

the paths including them. Then the total space complexity is
O(N+M+N+CM)=O(N+CM).

	Introduction
	NetBouncer overview
	Path probing via packet bouncing
	IP-in-IP basics
	Packet bouncing

	Probing plan and device failure detection
	Underlying model
	Real-world challenges for path selection
	Link-identifiable probing plan
	Device failure detection

	Link failure inference
	Data inconsistency
	NetBouncer's latent factor model
	Algorithm for link failure inference

	Simulation studies
	Simulation setup
	Probing plan
	Device failure detection
	NetBouncer design choices
	Comparison with existing systems

	Implementation and evaluation
	Implementation
	Data processor runtime evaluation

	Deployment experiences
	Discussions
	Related work
	Conclusion
	Proof of sufficient probing theorem
	Failure inference algorithm and complexity analysis

