
Integrated CPU and L2 Cache Voltage Scaling using
Machine Learning

Nevine AbouGhazaleh Alexandre Ferreira Cosmin Rusu Ruibin Xu Frank Liberato
Bruce Childers Daniel Mossé Rami Melhem

Department of Computer Science
University of Pittsburg
Pittsburgh, PA 15260

{nevine, apf75, rusu, xruibin, frank, childers, mosse, melhem}@cs.pitt.edu

Abstract
Embedded systems serve an emerging and diverse set of applica-
tions. As a result, more computational and storage capabilities are
added to accommodate ever more demanding applications. Unfor-
tunately, adding more resources typically comes on the expense of
higher energy costs. New chip design with Multiple Clock Domains
(MCD) opens the opportunity for fine-grain power management
within the processor chip. When used with dynamic voltage scaling
(DVS), we can control the voltage and power of each domain inde-
pendently. A significant power and energy improvement has been
shown when using MCD design in comparison to managing a sin-
gle voltage domain for the whole chip, as in traditional chips with
global DVS.

In this paper, we propose PACSL a Power-Aware Compiler-
based approach using Supervised Learning. PACSL automatically
derives an integrated CPU-core and on-chip L2 cache DVS pol-
icy tailored to a specific system and workload. Our approach uses
supervised machine learning to discover a policy, which relies on
monitoring a few performance counters. We present our approach
detailing the role of a compiler in constructing a custom power
management policy. We also discuss some implementation issues
associated with our technique. We show that PACSL improves on
traditional power management techniques that are used in general
MCD chips. Our technique saves 22% on average (up to 46%) in
energy-delay product over a DVS technique that applies indepen-
dent DVS decisions in each domain. Compared to no-power man-
agement, our technique improves energy-delay product by 26% on
average (up to 64%).

Categories and Subject Descriptors C.0 [Computer Systems Or-
ganization]: General—Hardware/software interfaces; D.3.4 [Pro-
gramming Languages]: Processors—Run-time environment

General Terms Performance, Management, Design

Keywords Power management, Integrated DVS policy, Machine
learning, Multiple Clock Domains

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’07 June 13–15, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

1. Introduction
Dynamic Voltage Scaling (DVS) is a technique that can be used to
reduce power consumption in CMOS digital circuits. A low clock
frequency allows the use of low supply voltage. A convex relation-
ship holds between frequency and power consumption for specific
types of circuits and thus a small decrease of frequency/voltage can
have a substantial impact on energy [15].

Embedded systems are evolving to accommodate a new and di-
verse set of applications. Such applications require increased pro-
cessor computational power, larger storage capacity, and longer op-
eration time. The advancement in processor technology creates the
opportunity for embedded processors to approach the performance
of general purpose processors by adopting performance solutions
like large caches, superscalar, and multiple cores. However, adopt-
ing most of these solutions leads to more power consumption. Un-
fortunately, with the plethora of embedded system designs and their
applications, it is hard to construct a power management policy that
can be directly applied to a variety of embedded systems.

Due to the continuous increase in the number of transistors
and decrease in feature size, higher chip densities create a prob-
lem for clock synchronization among chip computational units. An
effective solution to this problem is the use of design techniques
for Multiple Clock Domains (MCD) chips. In MCD, a processor
chip is divided into multiple domains. Each domain operates syn-
chronously with its own clock, and communicates with other do-
mains asynchronously through FIFO queues. MCD design allows
for fine grain power management of each domain, especially when
using dynamic voltage and frequency scaling (DVS). Since each
domain has its own clock and voltage (i.e., independent of the other
domains), DVS can be applied in each domain for an extra level of
power management (rather than applying DVS at the chip level).
Power and energy can be reduced with minimal impact on perfor-
mance by dynamically reducing the clock speed and voltage in do-
mains with low activity.

In this work, we automatically generate a custom power man-
agement policy for embedded processors. We are especially in-
terested in managing the power of the CPU-core and the on-chip
L2 cache, as they consume a large fraction of the total power in
current processors. We propose a Power-Aware Compiler-based
approach using Supervised Learning, PACSL. PACSL provides a
novel methodology to automatically derive an integrated CPU-core
and L2 cache DVS policy. The derived policy dynamically adapts
the domains’ voltages and frequencies to current workload in an
MCD processor. Our approach identifies application phases at run-
time and takes corresponding actions (i.e., setting the voltage and
frequency of both the processor and the L2 cache).

41

system
description

objective
training

applications

performance
monitors

Voltage
Settings DVS policy

policy
Generator

Figure 1. Information flow in PACSL

In PACSL, the automated generation of power management
policies relies on given system settings. Our special-purpose com-
piler takes as an input a state description of the system, which in-
cludes the architectural and application behaviors, and an optimiza-
tion criterion. Based on this input, it generates a custom policy for
this particular system. PACSL uses supervised learning process on
a set of representative training workload to derive the DVS policy.
Figure 1 shows the inputs and outputs in our approach. We eval-
uate our approach on different processor configurations and com-
pare its performance against a well known online DVS policy that
manages each domain voltage independently. Results show 22%
average (up to 46%) improvement in energy-delay product over a
DVS technique that apply independent DVS decisions in each do-
main. Compared to no-power management, our technique improves
energy-delay product by 26% on average (up to 64%).

One of the advantages of using our approach is its ability to
automatically construct a power-management policy for different
architectures (embedded and general-purpose) and different classes
of applications. Our technique also can be used to optimize for
different metrics (such as energy and energy-delay product) that
can be set by the user, which is useful with systems that operate in
one of multiple operation modes (such as power-saving mode, high
performance mode and high performance with temperature/power
budget throughout their missions). For each mode, our approach
derives a policy that can be loaded at a mode switch to optimize the
system for its current optimization criteria. All policies are derived
using the same methodology.

The rest of the paper is organized as follows. A motivation
and an overview of our approach are presented in Section 2. We
describe the essential phases of our compiler for obtaining a policy
using supervised learning technique in Section 3, followed by a
discussion of some practical design issues in Section 4. We present
an evaluation of our technique in Section 5, and briefly discuss
related work in Section 6. Finally, we conclude the paper and
discuss future work in Section 7.

2. Integrated DVS policy
2.1 Motivation

A typical application goes through phases throughout its execution.
An application has varying cache/memory access patterns and CPU
stall patterns. In general, application phases correspond to loops,
and a new phase is entered when control branches to a different
code section. Since we are interested in the performance and energy
of the CPU-core and L2 cache, we characterize each code segment
in a program using performance monitors that relate to the activity
in each of these domains. Figure 2 shows the variations in three
performance counters as examples of monitors that can be used

to represent a program behavior. The figure shows: cycles per
instruction (CPI), number of L2 accesses per instruction (L2PI),
and memory accesses per instruction (MPI). CPI and L2PI are
selected as indications of the amount of workload in the CPU-core
and L2 cache, respectively. On the other hand, L2PI and MPI can
be used to indicate the idleness in the CPU core and the L2 cache
domains, respectively.

Intuitively, each program phase has a different requirement and
preference toward a certain “configuration” of the CPU-core and
L2 cache frequencies. For example, if a section of code is CPU
bound, it will benefit from running at high CPU frequencies, and
may be insensitive to L2 cache latency (as with most phases in
equake in Figure 2). On the other hand, a memory bound phase
benefits the most from reducing the gap between the core and
cache performance (as with most phases in art in Figure 2). Typical
applications have alternate CPU and memory bound phases (as
shown in gzip in Figure 2). This is precisely the intuition behind
our approach. Our goal is to construct an integrated CPU-core and
L2 cache DVS policy that identifies application phases and selects
appropriate frequencies for the CPU and L2 cache domains for each
code section.

2.2 Optimization metrics

The “best frequencies” to use for the CPU-core and L2 cache do-
mains are defined in terms of some optimization metric. There are
three natural metrics: energy, performance, and energy-delay prod-
uct. When the metric is energy, it would seem that the most energy-
efficient frequencies are the minimum ones, due to the well-known
quadratic relationship between frequency and power [1]. However,
when looking at the system as a whole, this is no longer true [4].
Reducing the frequency of one component (e.g., the CPU-core) in-
creases execution time, which increases the energy consumption of
other components (due to static power dissipation for longer pe-
riods). Thus, the problem of identifying the optimal frequencies
that minimize the system energy is far from trivial. When perfor-
mance is the main requirement, we are interested in minimizing
energy while maintaining execution time within a specified per-
centage of full performance (which corresponds to the highest fre-
quencies available for both CPU and L2 cache). When energy and
performance are equally important, the optimization metric is de-
fined as the energy-delay product.

2.3 Overview of our compiler-based approach

We manage domain voltages through a hardware-software code-
sign approach. Our power management approach consists of two
main stages. First, an offline stage where a special-purpose com-
piler constructs a power management policy. Second, a run-time
stage where an embedded microcontroller monitors the system (in-
cluding the application behavior) and accordingly reacts by set-
ting domain voltages as defined by the policy. Figure 3 shows a
schematic diagram of an example processor chip with two domains
and a microcontroller that manages the domains voltages according
to the policy derived by our special-purpose compiler. PACSL can
be used to construct policies for different processor designs.

In the offline stage, PACSL learns the power management pol-
icy using sample applications. For this, we use a special-purpose
compiler that (a) analyzes the behavior of sample applications and
(b) develops runtime DVS policy according to a given optimization
metric. The analysis takes into account the architectural behavior
while executing the given applications. PACSL derives a policy us-
ing a supervised machine learning technique introduced in [12].
The compiler derives separate policies for different optimization
metrics. For systems that operate at different modes, the operat-
ing system loads the policy that corresponds to the current system

42

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 250 500 750 1000

 c
ou

nt
er

/in
st

n

 # instn (x500K)

gzip

CPI
L2PI
MPI

 0

 0.5

 1

 1.5

 2

 2.5

 0 250 500 750 1000

 c
ou

nt
er

/in
st

n

 # instn (x500K)

equake

CPI
L2PI
MPI

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 250 500 750 1000

 c
ou

nt
er

/in
st

n

 # instn (x500K)

art

CPI
L2PI
MPI

Figure 2. Variations in application phases throughout execution.

mode. Only one analysis phase is needed for all optimization crite-
ria.

During runtime, the microcontroller periodically monitors the
activity in each domain by recording a set of performance counters.
The microcontroller executes the policy to determine the best fre-
quency combination based on the values of the latest performance
counters read.

In the next section we focus on the policy construction process
detailing the role of the compiler in this stage.

L2 Cache L1 Cache

Functional Units

L2 DOMAIN CPU DOMAIN

PROCESSOR CHIP

Main Memory

V_cpuV_cache

Micro−
controller

Figure 3. Example of an MCD processor design with integrated
DVS control.

3. Construction of DVS Policy
To automatically construct a power management policy, PACSL
relies on a description of the state of the system under differ-
ent program behaviors and run-time system characteristics. A pro-
gram behavior description captures the instruction level parallelism
and cache/memory demands of the application. A separate run-
time characteristics description captures program latencies during
a given program phase. The goal is to identify for each possible
system state the correct action. For example, an action determines
how the CPU-core and L2 cache frequencies should be adjusted
to minimize energy-delay product. The compiler outputs a policy
that maps states to actions with the objective of optimizing a per-
formance metric (for example: energy and/or delay). The compiler
creates the DVS policy by conducting two main stages: data anal-
ysis and policy learning. Figure 4 illustrates the main tasks for de-
riving the power management policy. Below, we describe the tasks
performed in each of these two stages.

Training States States

Table

PM

policy

Optimization metric

ConstructionApplications
Learning

Architectural setting

Obtain
Training

Data

Training

Samples

Rule GenerationData Analysis

Figure 4. Stages for automatic DVS policy generation.

3.1 Stage I: Data analysis

In this stage, we represent all possible system states by a set of per-
formance counters readings (Section 3.1.1). The compiler discovers
the best operating frequencies for each state through an exhaustive
search of the training data (Section 3.1.2). The compiler then uses
the training data to construct a table that maps a state to a CPU and
cache frequency combination (Section 3.1.3).

3.1.1 State representation

In order to train our policy, we need a representation of the system
state that encapsulates the program and architectural behavior with
simple performance metrics. For example, we select the CPI, L2PI,
and MPI, which can be determined from hardware performance
counters. The CPI indicates the CPU utilization; however, it does
not by itself fully describe program phases. For example, a high
CPI corresponds either to a high cache miss ratio, high cache
access latency, or long instruction latencies (such as division).
Adding both L2PI and MPI into the state description can identify
the reason behind the high/low CPI, and hence more fully describes
application behavior. However, the CPI, L2PI and MPI do not take
into account the effective latency of instruction execution or cache
accesses (hits and misses), and to fully characterize the program,
these latencies have to be factored into the state description. We
describe the effective latency as a tuple of CPU-core and L2 cache
frequencies. Since we do not modify the memory speed, we don’t
include the memory frequency in our state representation. This
representation (CPI, L2PI, MPI, CPU-core and cache frequencies)
not only captures the total latency, but it also provides an estimate
of the total energy, since it is closely related to the operating
frequencies.

3.1.2 Obtaining Training Data

The data used to learn the policy is obtained from training bench-
marks in the following manner. Let Nc and Nh be the number
of CPU and cache frequencies, respectively. We run all training
benchmarks at all CPU and cache frequency combinations (Nc ·Nh

43

combinations). A sample is defined as a continuous code section
of fixed number of instructions equal to size. Thus, each training
benchmarks with a total of inst instructions will generate K =
inst/size code samples for one particular CPU/cache frequency,
and Nc · Nh · K samples for all frequency combinations. We de-
note the samples by Skij = {CPIkij , L2PIkij , MPIkij , Mkij},
where k represents the code sample (0 ≤ k < K), and i and j are
frequency indexes (0 ≤ i < Nc and 0 ≤ j < Nh). Mkij is the
metric to be optimized. Based on the user setting, the PACSL sub-
stitutes Mkij by either Ekij , or EDkij when optimizing for energy
or energy-delay product, respectively.

Thus, a state is described by five parameters: CPI, L2PI, MPI,
CPU-core frequency and L2 cache frequency. CPI, L2PI, and MPI
are continuous variables and need to be discretized. We choose a
number of discrete intervals, discretization bins, in a way that the
sample densities in each bin are almost equal. For example, because
of the L2 cache efficiencies in current designs, if most samples have
low L2PI, this would consequently create more L2PI ranges with
lower values (i.e., finer granularity where the density is higher).

As an illustrative example, consider a system with two CPU and
L2 cache frequencies: 0.5GHz and 1GHz. For ease of presentation,
we use values for two performance monitors: CPI and L2PI. To
reduce the state space, we discretize CPI and L2PI values into two
bin intervals. CPI bins cover values [0,1.39] and]1.39,∞], and
L2PI bins cover [0,0.02] and]0.02,∞]. Each sample lists its CPI
and L2PI bin indexes and the energy-delay product when running at
each frequency combination. Table 1 shows the collected samples
in our example.

3.1.3 ST construction

After collecting data for all samples, Skij , we construct the state
table ST, which contains the correct action for each state as de-
termined by the training data. ST includes all possible system
states. Let c, l, m be the number of discrete values (bins) of
the CPI, L2PI, and MPI, respectively. The state table is defined
as: ST [CPIc][L2PIl][MPIm][i][j], where CPIc, L2PIl, and
MPIm are the discretized values. For each state we want to deter-
mine the action that minimizes a user-selected optimization metric;
for example, the energy-delay product.

We construct the table as follows. Since for each section of
code all the possible frequency combinations are available, the best
action can be determined by adding the energy-delay product of
each sample running at the new frequency. Since different sections
of code may have the same state, an array that accumulates all
values for the same state are used:
Acc[CPIkij][L2PIkij][MPIkij][i][j][x][y], where CPIkij ,
L2PIkij , MPIkij , i, and j are the state parameters and x and y
are the new CPU and cache frequencies (that is, the action). For
each training sample Skij and each possible action x, y (x is the
next CPU frequency, y is the next cache frequency), we update the
array as follows.

for all samples do
for all CPU frequency i = 0 . . . Nc do

for all Cache frequency j = 0 . . . Nh do
for all future CPU frequency x = 0 . . . Nc do

for all future Cache frequency y = 0 . . . Nh do
Acc[CPIkij][L2PIkij][MPIkij][i][j][x][y]+ =Mkxy

end for
end for

end for
end for

end for
The array Acc accumulates the values of the optimization met-
ric, Mkxy , for all training samples and under all possible actions.
After updating the array for all samples, the action for each state

is the one that minimizes the metric. In other words, after up-
dating the Acc table for all samples, the action for each state,
ST [CPIkij][L2PIkij][MPIkij][i][j], is the frequency combina-
tion 〈x, y〉 that produce the minimum
Acc[CPIkij][L2PIkij][MPIkij][i][j][x][y]. The resulting state
table is a five dimensional table (three features and frequencies for
two domains) that represents all possible system states. ST maps a
state to the best frequency that optimizes the metric under consid-
eration.

Table 2 shows the state table for the training samples shown in
Table 1. State description is composed of CPI, L2PI and the two do-
main frequencies (fcpu and f$). The table shows the best frequency
combinations (CPU frequency / Cache frequency) for each state de-
scription. Note that not all of the ST states are populated (unpopu-
lated states are marked by -). That is why we use machine learning
to learn the best frequency combination in the missing states based
on the discovered ones.

Table 2. Constructed ST from samples in Table 1.
fcpu=0.5GHz fcpu=1GHz

CPI L2PI f$=0.5 f$=1 f$=0.5 f$=1
0 0 1/0.5 1/0.5 - -
0 1 1/1 1/1 - 1/1
1 0 1/0.5 - 1/0.5 1/0.5
1 1 1/0.5 - 1/1 1/0.5

Since the training data do not cover all possible states in the
table (because some states may not be discovered from the training
applications/data). We use a supervised machine learning algorithm
to derive the DVS policy that can react (select new CPU and cache
frequencies) to any possible system state.

3.2 Stage II: Integrated DVS policy learning

There are many supervised learning techniques, including logis-
tic classification, neural network, decision tree, and propositional
rule. We prefer the propositional rule approach because it is more
compact, more expressive, and more human readable than the other
techniques. Furthermore, propositional rules are easy to implement
in hardware. In fact, we tried all the aforementioned techniques on
the training data and the propositional rule approach most closely
models ST .

We use the Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) learner [3]. The RIPPER algorithm is known
to achieve low error rates while being efficient on large data sets.
RIPPER represents the collected states in the form of propositional
(if-then) rules. Each rule specifies the desirable CPU frequency
and cache frequency for the next program interval based on the
current state. The learner is based on the Incremental Reduced
Error learning IREP algorithm [5]. RIPPER repeatedly calls IREP
to construct the rule set with low error rates.

IREP iteratively builds its rule set in a greedy fashion; that is,
one rule at a time. IREP works in two phases: growing and prun-
ing. First, it randomly partitions the data set in to two subsets: the
growing and pruning sets. The rule growth phase constructs an ini-
tial rule set. It starts with an empty clause and then repeatedly adds
sub-conditions to the antecedent. The sub-conditions maximize the
coverage of the rule (represents more states). The stopping criterion
for adding sub-conditions is either covering all the input states or
not being able to improve the rule coverage. After growing a rule,
the rule is immediately pruned in the pruning phase. Pruning is an
attempt to prevent the rules from being too specific. IREP chooses
the candidate literals for pruning based on a score that is applied
to all the sub-conditions of the antecedent and evaluate the score
using the pruning data. This process is repeated until all states are
covered or the learned rules have very small error.

44

Table 1. Eight training samples: CPI, L2PI and energy-delay product (ED) at all frequency combinations. O and 1 are the index of the CPI
and L2PI bins.

fcpu 0.5GHz 0.5GHz 1GHz 1GHz
f$ 0.5GHz 1GHz 0.5GHz 1GHz
s CPI L2PI ED CPI L2PI ED CPI L2PI ED CPI L2PI ED
1 0 1 200 0 1 354 1 1 183 1 1 187
2 0 1 242 0 1 428 1 1 223 1 1 226
3 0 0 436 0 0 768 1 0 395 1 0 403
4 0 1 274 0 1 481 1 1 252 0 1 250
5 0 0 473 0 0 826 1 1 430 0 0 430
6 1 1 330 0 1 588 1 1 309 1 1 317
7 1 0 361 0 0 642 1 0 327 1 0 339
8 1 0 401 0 0 709 1 0 363 1 0 374

The resulting rules are generated in the form of: IF <cond>
THEN <set freq>, where cond is a conjunction of one or more
of the following sub-conditions. (CPIcur ≤ CPIc), (CPIcur ≥
CPIc), (L2PIcur ≤ L2PIl), (L2PIcur ≥ L2PIl), (MPIcur ≤
MPIm), (MPIcur ≥ MPIm), (cf = i), and (mf = j) where
CPIcur, L2PIcur, MPIcur, cf and mf are the current CPI,
L2PU, MPI, CPU frequency and cache frequency, respectively.
set freq specifies the value of the next CPU or cache frequencies.
Rules learned from ST in Table 2 are shown in Table 3. Note that
the number of rules is very small because of the simplified system
setting chosen in our hypothetical example.

Table 3. Example of a policy to minimize energy-delay product.
Rule
1 if (L2PI ≥ 1) and (CPI ≤ 0) then f$=1GHz
2 else f$=0.5GHz
3 fcpu=1GHz

4. Design Issues
Feature Selection Ultimately, all DVS policy decisions are based
entirely on the current system state. It is important, therefore,
to characterize the state in terms of features which provide rel-
evant information about the current application phase. Our hy-
pothesis, based on architectural knowledge, is that CPI, L2PI, and
MPI (along with the current CPU-core/cache frequencies) cap-
ture enough about application behavior to make informed choices,
while still being inexpensive to gather at runtime. We can use more
features to represent a system state; however, using too many fea-
tures can cause an overfitting (a known problem in machine learn-
ing) where it is hard to create a general state description for the
unseen states.

Optimization metrics Once the training samples are collected, the
data used to learn the DVS policy can be obtained for different
metrics. The collection of training samples is a one-time step and
is independent to the optimization metric. Thus, metrics can later
be changed by simply updating Mkxy in Equation (6). One of the
strengths of our approach is that the compiler needs to analyze the
system only once and therefore generate different policy for each
optimization metric.

Training applications Training applications are selected based
on the diversity of the states each application can produce. Appli-
cations that compose the set of training applications should com-
plement the others in the set by increasing the number of different
states with information. The more ST is populated, the more accu-
rate the policy can derive actions for the unseen states. In general, it
is desirable to use representative applications that include memory-
bound and CPU-bound phases to cover more states in the table.

Also, applications that have a large variation of the behavior in its
phases, such as gcc, will highly contribute to ST population.

Sample size We chose DVS control intervals measured in number
of instructions instead of number of cycles (or time) to evaluate
different actions for the same code sample. The table describing
the derived policy can actually be used with a periodic timer-based
mechanism. Different sample size values result in the same policy
rules, as long as size is not larger than the application phases.From
an architectural perspective, periodically selecting new frequencies
is a more immediate approach, because it only requires a simple
timer-based interrupt mechanism.

Overheads The overhead of a frequency change is typically just a
few microseconds. However, voltage change overheads are higher,
ranging from a few dozen microseconds to a few milliseconds (e.g.,
for StrongARM SA-1100 the voltage change overhead is 140µs
[10]). The sample size depends on the total overhead: a small sam-
ple may have high frequency/voltage change overheads, while a
large sample may exceed typical code phases of applications. For
example, changing the frequency/voltage every 1ms with an over-
head of 140µs yields an overhead as large as 14%. The overhead
can be mitigated by enforcing a limit on the number of speed
changes. For example, simple schemes can enforce at most one
speed change say every 10ms, without changing the sample size.
Alternatively, the size can be increased. Even better, while the over-
head for a voltage change is large, frequency changes are very fast,
and the system is operational while the voltage is scaling. When the
frequency is decreased, the system immediately changes the fre-
quency, although it will take a while for the voltage to lower. When
the frequency is increased, the system runs on the old frequency
until the voltage is raised, after which the frequency is increased as
well. Thus, the actual overhead is just the frequency change over-
head, though frequency increases may take effect with a delay (for
example, 140µs in the strong arm processor). Such delays are much
shorter than application phases and do not affect the policy. Note
also that voltage change overheads are today in the microseconds
range [9].

Inefficient operating points Processors may have inefficient fre-
quency/voltage combinations [8]. A frequency is inefficient if there
exists a higher frequency that results in lower energy consumption.
Another advantage in our approach is that the compiler can deter-
mine the best action and inefficient operating points are naturally
eliminated if they exist.

Measurement-based versus theoretical models We use a mea-
surement based approach (i.e., experiments are run to derive a pol-
icy), as opposed to an analytic model-based approach. Thus, there
is no implicit assumption of theoretical power models (such as
power relationship with the voltage and frequency). This means

45

Table 4. Simulation configurations

Parameter Config A Config B
Decode width 1 insn 4insn

Issue width 1 insn 6insn
dL1 cache 64KB, 2-way 64KB, 2-way
iL1 cache 64KB, 2-way 64KB, 2-way
L2 Cache 1MB DM 1MB DM

L1 lat. 2 cycles 2 cycles
L2 lat. 12 cycles 12 cycles

Int ALUs 2+1 mult/div 4+1 mult/div
FP ALUs 1+1 mult/div 2+1 mult/div

INT Issue Queue 4 entries 20 entries
FP Issue Queue 4 entries 15 entries

LS Queue 8 64
Reorder Buffer 40 80

that the policy works well in identifying the correct actions without
assuming of whether the system supports DVS or just frequency
scaling (for example) and without assuming of the relationship
among voltage, frequency and power. While a model can be in-
accurate and difficult to construct, measurement-based approaches
eliminate this problem from the start, at the expense of one-time
offline measurements.

5. Evaluation
In this section, we analyze the effectiveness of PACSL methodol-
ogy. We state our experimental setup, evaluate PACSL by compar-
ing it to an independent DVS policy under several system settings,
and analyze the training process.

5.1 Experimental Setup

We use the Simplescalar and Wattch architectural simulators with
an MCD processor extension [19]. The MCD extension by Zhu et
al. models inter-domain synchronization events and voltage scaling
overheads. We alter the design in [19] to construct two domains:
CPU-core and L2 cache, as shown in Figure 3. The simulated
frequencies for both domains vary from 250MHz to 1GHz with
250MHz steps. Voltage scales linearly with the frequency in the
specified range. Memory is considered an external domain with a
fixed latency. The processor configuration used in our simulations
is listed in Table 4. Unless stated otherwise, we use the single-issue
processor configuration (Config A) for our results. We discretize
CPI values into 11 bins, L2PI into 8 bins, and MPI into 4 bins.

To obtain the propositional rules, we use JRip from the WEKA
data mining software package [17]. JRip is an optimized implemen-
tation of the RIPPER learner. The rules are produced based on the
data collected for the given architectural configuration. Each rule
specifies the desirable CPU frequency and cache frequency for the
next program interval based on the current state (that is, CPI, L2PI,
MPI, old CPU and cache frequencies).

An important aspect of using JRip is the format of the training
data, which affects the quality of the generated rule set. Although
all the state parameters of the training data are discrete (cache
and CPU frequencies are discrete in nature, while CPI, L2PI, and
MPI are discretized into bins), we specify in the input to JRip
that all parameters are continuous to get a more compact rule set.
Using JRip also involves tuning the parameters for the RIPPER
algorithm. For instance, the RIPPER algorithm needs to partition
the training data into a growing set and a pruning set. We choose the
partition size to be two thirds for the growing set. Since RIPPER is
a randomized algorithm, different randomization seeds will lead to
different results. We experimented with different values and chose

a seed value that reduced the error rate and rule set size for our
input.

We ran a mixture of the SPEC2000 and Mibench benchmarks.
The simulations are split into training and evaluation simulations.
The training simulation executes a subset of the applications to gen-
erate the samples used for deriving the policy (i.e., the mapping of
states to actions as described in Section 3). Training applications
are listed in Figure 9. For the SPEC2000 benchmarks, the training
simulations use the train input data set and the evaluation simula-
tions use the ref input data set. For the Mibench, we use the small
data set for training and the large data set for evaluation. For un-
biased evaluation, 21 out of the 24 reported benchmarks were not
part of the training process. We fast forward the first 1000 (500)
million instructions for the SPEC2000 (Mibench) benchmarks and
simulate the following 500M instruction. Exceptions are the small
benchmarks in Mibench suite: dijkstra, fft and jpeg, where we run
the application for the first 500M instructions or until completion.

We compare our derived policies against the attack-decay policy
proposed in [7], which periodically monitors CPI and L2PI to
control the CPU-core and L2 cache domains independently. We use
a 500K instruction control period for the periodic voltage changes.
We normalize all results to no-power management case, which
operates both domains at the maximum frequencies.

5.2 Experimental Results

In this section, we show the energy-delay product results of the
policies learned from PACSL in comparison with an independent
CPU-core and L2 cache DVS policy [7]. We show how PACSL is
affected by the class of applications, architectural configurations,
and the optimization metric (as shown in Figure 1).

Energy-delay product improvement Figure 5 shows the energy-
delay product for the independent DVS policy versus the ones
generated by PACSL1. The generated policy (with the use of MPI)
contains 33 rules. On average, PACSL’s policy improves energy-
delay product over the independent policy by 21% and 22% for
the Mibench and SPEC2000, respectively. The independent policy
being a heuristic-based can perform badly with some applications
as seen in crc32, dijkstra and mesa. This is because the policy
was unable to select the best frequency to minimize energy-delay.
It rather reacts to the CPI and L2PI changes by changing the
frequencies in the same direction of their change, which does not
guarantee operating on an efficient frequency.

State description Figure 5 also shows the energy-delay product
in case of discarding the MPI feature from PACSL state descrip-
tion. In this case, PACSL generates a policy with fewer rules: 27
rules. In Mibench, using MPI does not improve the energy-delay
product because most of the applications’ data accesses occur in
the caches. So memory latency has trivial effect on the applica-
tions performance and energy. In contrast, SPEC2000 benchmarks
have larger memory footprints, thus using MPI in the state descrip-
tion enables the rule learner to distinguish between memory bound
versus L2 cache bound phases. Hence, PACSL with MPI further
improves energy-delay product by 1.8% on average and up to 8.6%
(in mgrid).

Optimization metric PACSL analyzes the application and the ar-
chitectural behavior once, then it can generate policies geared to-
wards optimizing a given metric. To show this, we use the same

1 Note that results for the independent policy differ from the ones reported
in [7]. This is because of few reasons. As reported by [18], we use an up-
dated version of the simulator and simulate different window size. More-
over, our MCD design includes only two domains versus six in the original
design, and we use only four frequency levels whereas work in [7] uses
continuous frequency range (320 levels).

46

Figure 5. Energy-delay product for SPEC2000 and Mibench benchmarks when using Independent DVS versus PACSL.

Figure 6. Energy-delay product when optimizing energy with delay bound.

Figure 7. Energy-delay product for policies running on system with configuration Config B in Table 4.

47

Figure 8. Average energy-delay product at different DVS control-
interval sizes (using Config A).

training samples obtained for energy-delay product and construct
ST to select the best frequency combination that minimizes the en-
ergy while maintaining the delay within bound. We show results for
10% bound on performance degradation. A new policy is generated
with this objective. Figure 6 shows the energy-delay product of our
benchmarks (when accounting for MPI). On average, we achieve
21% and 14% improvement over the independent policy for the
Mibench and SPEC2000, respectively.

Processor configuration PACSL can be used with different ar-
chitectural configurations. To show the impact of using PACSL
with wide range of processor configurations, we experiment with
high-performance processor configuration. For this experiment, we
use an alpha-like configuration shown in Table 4 (Config B). Fig-
ure 7 shows an improvement of 22% and 31% for the Mibench and
SPEC2000 benchmarks, respectively.

Control Granularity One important parameter of a DVS policy
is how often to trigger a speed change. Few speed changes reduce
overhead but also eliminate the fine grain control to adapt to shorter
program phases, and vice versa. In this experiment, we vary the
period in which we trigger the DVS policy. We report the average
energy-delay product– normalized to no-power management– of
all reported Mibench and SPEC2000 benchmarks. Figure 8 shows
that by increasing the control interval size, the independent policy
reduces the number of speed changes, which reduces the policy
overhead and thus reduces its energy-delay product. On the other
hand, our DVS policy naturally has fewer speed changes because
it selects the best frequencies for a given state rather than changing
the frequency based on reaction to a change in feature value as in
the independent policy. Hence, increasing the control interval size
has minimal impact on the energy-delay product in the tested range.

From the results in this section, we conclude that our learning
methodology is capable of generating policies that can used to op-
timize different systems. The policies being aware of the system
state are effective in optimizing the system (for example, by reduc-
ing the energy-delay product or energy with limited performance
degradation).

5.3 Analysis of the training process

In this section, we study the data analysis phase for obtaining a
policy to optimize the energy-delay product (same policy used to
obtain the results shown in Figure 5).

5.3.1 ST coverage

We investigate the efficacy of the training data in discovering the
possible states in ST, which are used in generating the policy rules

Figure 9. ST coverage.

(as described in Section 3). The objective is to discover most of ST
from the training sample. Each of the applications used in train-
ing covers a number of states in the table with some applications
having larger coverage than others. Figure 9 shows the number of
distinct states that each application can discover. The applications
are sorted in descending order by number of states. The line graph
in the figure represents the number of new states contributed to ST
by each application. Intuitively, using applications with a higher
number of discovered states is more beneficial in the training pro-
cess as they add more information to ST. For example, the first four
applications (gcc, gzip, bzip and twolf) were responsible for 82% of
the ST coverage. However, using applications with large number of
distinctive states but populating states that were already discovered
in ST is not useful. For example, bzip, exhibits similar behavior
to gzip, thus, few new states were populated in ST by bzip. Con-
versely, art is very useful to populate an area not covered by the
other applications. Hence, a desired characteristic for applications
to use in training is to exhibit large variations in program behavior
(phases) that are different than other training applications used. By
carefully choosing a few applications with varying behavior, ST can
be covered with relatively small number of training applications.

5.3.2 Rule Simplification

As mentioned earlier, when populating the Acc table with samples
from the training data, inevitably some entries will have no data.
These are extrapolated by the RIPPER algorithm, when the table is
converted into rules. However, some entries will have a small, but
non-zero, number of samples. Since these under-populated entries
might not represent good average-case behavior for the correspond-
ing system state, it might be beneficial to exclude them from the
data given to the RIPPER algorithm.

By omitting states which contain fewer than 60 samples when
applying the RIPPER algorithm, we arrive at a DVS policy con-
taining only 11 rules (with MPI). The difference in energy-delay
product between the original and reduced policies is generally less
than 1%. We hypothesize that many of the under-populated states
simply add noise to the resulting DVS policy, while also increas-
ing the complexity of the rules. Determining the value of a given
state in deriving a DVS policy is a subject of future work. Reduc-
ing the number of rules has the advantage of reducing the run-time
overhead of the DVS policy as fewer conditions are tested.

6. Related Work
Several power management policies have been proposed to incor-
porate DVS into MCD chips. The published results show a sig-
nificant power and energy improvement over applying DVS to a
fully synchronized chip (i.e., with a single master clock). Magklis

48

et al. propose an online power management policy that monitors
queue occupancy of a domain and adapts the domain’s voltage ac-
cordingly [7]. For each domain, the policy computes the change in
the average queue length among consecutive intervals. When queue
length increases, the voltage and clock speed are increased. Simi-
larly, when queue length decreases, the voltage and clock speed
are decreased. However, this policy does not take into account the
cascading effects of changing a domain voltage on other domains.
Another technique by Magklis et al. uses a profile-based approach
to identify program regions that justify reconfiguration [6]. This ap-
proach incurs extra overhead due to profiling and analysis phases
for each application under consideration. In contrast, our technique
learns the DVS policy with training samples and can be directly
applied to new applications without profiling. Zhu et al present ar-
chitectural optimizations for improving power and reducing com-
plexity [19]. Voltage scaling of off-chip L2 caches for embedded
systems is studied in [11].

Sherwood et al. showed that programs have repeatable phase-
based run-time behavior over many hardware metrics, such as
cache behavior or branch prediction [14]. The authors also provide
a tool, called SimPoint, that automatically identifies and clusters
the phases in a program in order to speed up architectural simula-
tions [13].

Applying machine learning techniques to reconfigure architec-
tural and compiler settings is a relatively unexplored field. Wild-
strom et al. present a policy to alter server configuration in re-
action to workloads [16]. The policy learns to identify preferable
CPU and memory configurations. They showed significant perfor-
mance benefits using machine learning policy over any fixed con-
figuration. Cavazos et al. use supervised learning to predict which
application’s basic blocks can benefit from scheduling [2]. The
learned policy selects whether to schedule a block or not. The pol-
icy achieves most of the potential performance improvement with
significantly less overhead.

7. Conclusions
In this work, we propose a compiler-based approach to automat-
ically generate integrated DVS policies, which manage power in
both CPU-core and L2 cache. We characterize the system state by
the running application behavior on the given architectural configu-
ration. Our power-aware compiler approach, PACSL, uses machine
learning to learn policies given description of the system states.
The learned policies are constructed to optimize the system power
according to a user selected optimization metric, such as energy,
energy-delay product or energy under limitation on performance
constraints. We show that our approach generates efficient policies
that can achieve larger improvement in energy-delay product over
a heuristic-based policy. Our technique saves 22% on average (up
to 46%) in energy-delay product over a DVS technique that ap-
ply independent DVS decisions in each domain. Compared to no-
power management, our technique improves energy-delay product
by 26% on average (up to 64%). Our approach can be applied to a
wide range of systems that employ dynamic voltage scaling.

References
[1] T. D. Burd and R. W. Brodersen. Energy efficient cmos microproces-

sor design. In Proc. of The HICSS Conference, Jan. 1995.

[2] J. Cavazos, J. Eliot, and B. Moss. Inducing heuristics to decide
whether to schedule. In PLDI ’04: Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design and
implementation, pages 183–194. ACM Press, 2004.

[3] W. W. Cohen. Fast effective rule induction. In Proceedings of the
12th International Conference on Machine Learning, June 1995.

[4] X. Fan, C. S. Ellis, and A. R. Lebeck. The synergy between power-
aware memory systems and processor voltage scaling. In Proceedings
of the Workshop on Power-Aware Computer Systems (PACS’03),
2003.

[5] J. Furnkranz and G. Widmer. Incremental reduced error pruning. In
International Conference on Machine Learning, pages 70–77, 1994.

[6] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and
S. Dropsho. Profile-based dynamic voltage and frequency scaling
for a multiple clock domain microprocessor. In Proceedings of the
30th International Symposium on Computer Architecture (ISCA’03),
June 2003.

[7] G. Magklis, G. Semeraro, D. H. Albonesi, S. G. . Dropsho,
S. Dwarkadas, and M. L. Scott. Dynamic frequency and voltage
scaling for a multiple clock domain microprocessor. IEEE Micro,
23(6):62–68, 2003.

[8] A. Miyoshi, C. Lefurgy, E. Hensbergen, R. Rajamony, and R. Ra-
jkumar. Critical power slope: Understanding the runtime effects of
frequency scaling. In Proceedings of the 16th Annual ACM Interna-
tional Conference on Supercomputing, New York, June 2002.

[9] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the lparm
microprocessor system. In Proc. of the International Symposium
on Low Power Electronics and Design (ISLPED’00), pages 96–101,
2000.

[10] J. Pouwelse, K. Langendoen, and H. Sips. Application-directed
voltage scaling. In IEEE Transactions on Very Large Scale Integration
(TVLSI), Sept. 2002.

[11] K. Puttaswamy, K. Choi, J. Park, V. J. M. III, A. Chatterjee, and
P. Ellervee. System level power-performance trade-offs in embedded
systems using voltage and frequency scaling of off-chip buses and
memory. In Proceedings of International Symposium on System
Synthesis (ISSS’02), Kyoto, Japan, 2002.

[12] C. Rusu, N. AbouGhazaleh, A. Ferreria, R. Xu, B. Childers, R. Mel-
hem, and D. Mossé. Integrated cpu and l2 cache frequency/voltage
scaling using supervised learning. In Workshop on Statistical and Ma-
chine learning approaches applied to ARchitectures and compilation
(SMART), 2007.

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of
the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002.

[14] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In Proceedings of the 30th International Symposium on Computer
Architecture (ISCA’03), 2003.

[15] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced cpu energy. In First Symposium on Operating Systems
Design and Implementation, pages 13–23, 1994.

[16] J. Wildstrom, E. Witchel, and R. J. Mooney. Towards self-configuring
hardware for distributed computer systems. In ICAC ’05: Proceedings
of the Second International Conference on Automatic Computing,
pages 241–249, Washington, DC, USA, 2005. IEEE Computer
Society.

[17] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco, 2005.

[18] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal online
methods for voltage/frequency control in multiple clock domain
microprocessors. In ASPLOS-XI: Proc Intl Conf on Architectural
support for programming languages and operating systems, pages
248–259, 2004.

[19] Y. Zhu, D. H. Albonesi, and A. Buyuktosunoglu. A high performance,
energy efficient gals processor microarchitecture with reduced
implementation complexity. In ISPASS’05: Proc Intl Symp on
Performance Analysis of Systems and Software, pages 42–53, 2005.

49

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

