
Cache Miss Rate Predictability via Neural Networks

Rishikesh Jha ∗

College of Information and Computer Sciences
University of Massachusetts Amherst

Amherst, MA 01003
rishikeshjha@cs.umass.edu

Arjun Karuvally ∗

College of Information and Computer Sciences
University of Massachusetts Amherst

Amherst, MA 01003
akaruvally@cs.umass.edu

Saket Tiwari ∗

College of Information and Computer Sciences
University of Massachusetts Amherst

Amherst, MA 01003
sakettiwari@cs.umass.edu

J. Eliot B. Moss
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA 01003

moss@cs.umass.edu

Abstract

A program run, in the setting of computer architecture and compilers, can be
characterized in part by its memory access patterns. We approach the problem of
analyzing these patterns using machine learning. We characterize memory accesses
using a sequence of cache miss rates, and present a new data set for this task.
The data set draws from programs run on various Java virtual machines, and C
and Fortran compilers. We work towards answering the scientific question: How
predictable is a program’s cache miss rate from interval to interval as it executes?
We report the results of three distinct ANN models, which have been shown to be
effective in sequence modeling. We show that programs can be differentiated in
terms of the predictability of their cache miss rates.

1 Introduction

Modern computers use a deep memory hierarchy to boost performance. A typical hierarchy consists of
Level 1 data and instruction caches, Level 2 and 3 combined caches, and main memory. Considering
virtual memory, the file system is another layer, and data and instruction translation buffers (TLBs)
are further caching mechanisms. When data are not found in a particular cache, it is called a miss,
and the miss rate can affect performance greatly. Here we consider the question: How predictable
is a program’s miss rate over time as it executes? This is a scientific question distinct from the
engineering question of how to build a good predictor. For current hardware, it is not clear what
one would do with a good predictor, except perhaps in adjusting main memory allocations in virtual
memory paging.

In order to evaluate the efficiency and efficacy of compilers and computer architectures during a
program run, benchmarks such as SPEC CPU 2000 [15] have been developed for C, C++, and
Fortran programs, DaCapo [5] for Java programs. Traditionally, the study of benchmark programs
has involved aggregate metrics and has not employed machine learning methods. Here we investigate
the predictability of cache miss rates for programs from these benchmark suites.

Artificial neural networks (ANNs) have been effective in learning from sequences to predict unseen
patterns in Natural Language Processing (NLP) [16, 3, 13] and audio generation [17, 12]. Recently,
Hashemi et al. [8] related the problem of modeling memory access pattern as a sequence learning
problem in NLP.

∗equal contribution

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



(a) Jikes RVM (b) HotSpot (c) J9
Figure 1: log10 of cache miss rates for Java programs on 3 virtual machines over time

(a) C (b) Fortran
Figure 2: log10 of cache miss rates for Fortran and C programs over time

Chiu et al. [7] and Chiu and Moss [6] apply machine learning to program phase change detection
and phase prediction. We apply ANN sequence learning techniques to study sequences of cache
miss rates and determine how predictability of these sequences varies across programs. We make
two contributions here. First, we introduce this sequence learning task, introducing a new data set.
Second, we work towards insights into benchmark programs and compilers using sequence modeling.

Data Set: For the SPEC CPU 2000 programs (“ref” size runs) we collected traces of every memory
access made by the programs in valgrind, specifically its Lackey tool [14]. We used the same
tool on DaCapo Java programs (plus a modified javac benchmark) run under three Java virtual
machines (JVMs): Jikes RVM [1], an IBM standard product JVM, and IBM’s J9. See Figures 1
and 2 for examples. We mapped virtual addresses to their 64-byte (or, for pages, 4096-byte) virtual
cache line, and applied the least recently used (LRU) stack algorithm [4] to obtain miss rates for
various cache sizes. Here we consider size 32K bytes. The rates are aggregated over windows
of 1,000,000 instructions, for instruction accesses only, data only, and both. Thus we obtain six
sequences of numbers in the range [0,1] from each trace (two cache line sizes × instruction only,
data only, both). The dataset is publicly available at https://github.com/umass-moss-lab/
Cache-Miss-Rate-Predictability.

Data Preprocessing: We transform the cache miss rates using log10 to show better the interesting
miss rates close to 0. (To avoid 0 itself, we first add a small ε to the miss rates.) Values less than
−6 we map to −6, since such small rates are insignificant. For learning, the sequences are divided
into contiguous chunks, with some chunks used for training and others for testing. Training and test
chunks are drawn from all parts of traces so that all program phases are captured in both training and
testing.

2 Models

We model the data using three different ANNs. In keeping with the nature of the data all three models
are auto-regressive, employ discretized representations in the input and output space, and are ones
commonly applied to sequence learning tasks in a variety of settings.

LSTM: LSTMs [10], a variant of RNNs, have been successful in sequence modeling due to their
ability to capture short and long term dependencies in sequential data [16, 18]. An LSTM estimates
the distribution

Pr(x) = ΠT
t=1 Pr(xt|x1, ....xt−1), (1)

where x is the sequence of cache miss rates, T is the length of the sequence x, and xt represents the
cache miss rate at time t. Unrolling LSTMs beyond a certain time step in the history of a sequence
leads to heavy computation and vanishing gradient issues [9, 2], so we modified the model to account

2

https://github.com/umass-moss-lab/Cache-Miss-Rate-Predictability
https://github.com/umass-moss-lab/Cache-Miss-Rate-Predictability


(a) LSTM (b) WaveNet (c) SampleRNN

Figure 3: Log Likelihood for C and Fortran Programs

for this by unrolling only up to a finite number of time steps, h, behind the current history of the
sequence. Our model consists of an LSTM layer followed by three fully connected layers [11]. The
hidden state of the LSTM is forwarded to the next prediction of the model. The hidden state, in
theory, contains information about the values prior to the current time step.

WaveNet: Recent advances in raw audio wave form generation from text and also from preceding
audio stream have been achieved using ANNs [17]. The similarity, albeit weak, between modeling
raw audio wave forms and cache miss rates stems from the fact that the both sequences have high
frequency components and span a finite range of values. Also, the discretization of the raw audio
space has analogues in the recently proposed neural prefetchers [8].

We formulate the problem of predicting cache miss rates analogously to conditional wavelets as
described by van den Oord et al. [17]. The wavelet is conditioned on h which is a 1-hot encoding of
the memory trace ids

Pr(x|h) = ΠT
t=1 Pr(xt|x1, ..., xt−1,h).

The one-hot encoded vector h is then projected into a dense representation that is learned at every
layer:

tanh(Wf,k ∗ x + V T
f,kh)� σ(Wg,k ∗ x + V T

g,kh),

where V∗,k is a learnable linear projection which projects the 1-hot encoded vector into a dense
representation, x is the output of the previous layer, W∗,k is a matrix of learnable parameters, and the
subscripts f, g represent filter and gate parameters. The scalar variable k is used to denote the layer
number in the model.

We modify the WaveNet architecture, replacing the µ−law encoding and decoding layers with a linear
one. (µ−law encoding ignores outliers, and the mid-range values make fine-grained distinctions,
which need not apply in our case.) We also omit stacked dilations and instead use dilations ranging
from 2 to 512, increasing exponentially.

SampleRNN: Similar to WaveNet, SampleRNN [12] has achieved state-of-the-art results for audio
wave form generation. In contrast to WaveNet, it uses RNNs at different time scales to model
long-term dependencies, instead of using dilated convolutions. We use SampleRNN to model the
probability distribution as described in Equation 1. The output space is a p-way soft-max distribution.

3 Experimental Results and Insights

We discretize the sequence into 256 channels for all three models. We trained the models to minimize
the negative log-likelihood. We found that the following hyper-parameters worked best for our
validation set:

LSTM: Mini-batches of size 7, learning rate 0.00001, and the Adam optimizer with exponential
decay rates β1=0.9, β2=0.999, and h = 200. WaveNet: Mini-batches of size 1, learning rate of 0.001,
momentum parameter 0.9, and L2 regularization with coefficient 0.001. SampleRNN: Mini-batches
of size 128, a receptive field of 512, and the Adam Optimizer with learning rate 0.001, β1=0.9, and
β2=0.999. Frame sizes of 2, 4, and 8, respectively, worked best with our three-tier SampleRNN
architecture with p=256.

We compare the results of the three models (see Figures 3 and 4). We observe that Figure 3a shows
how the log likelihood of traces varies across virtual machines. Note that the three virtual machines

3



(a) LSTM (b) WaveNet (c) SampleRNN

Figure 4: Log Likelihood for Java Virtual Machines

have typically different likelihoods, and the majority of the traces can be ordered as HotSpot, J9,
and Jikes RVM (lowest to highest likelihood). Considering that log likelihoods correspond to the
predictability of the traces, Jikes RVM is seen to have the highest predictability and HotSpot the
lowest. This can be attributed to the fact that Jikes RVM uses only compiled execution while
HotSpot combines interpretation and compilation, so its access patterns vary more. Figure 3a in turn
shows how C/Fortran traces differ in log likelihood. Fortran programs show very high predictability
compared to C programs, which are spread across the likelihood spectrum. The higher predictability
of Fortran traces may be because many Fortran programs emphasize regular processing across dense
arrays, while C programs lean toward pointer-linked data structures, whose accesses will be more
scattered across memory.

Note that a naive predictor which predicts a uniform distribution (with probability 1/256 for each
discrete bin) would result in an average log likelihood of -5.45. Although each one of our models vastly
out performs such a predictor, we observe that estimating a probability distribution Pr(xt|x1, ....xt−1)
for the provided data set, is a challenging task nevertheless.

4 Discussion

We have introduced a new data set for analyzing the predictability of cache miss rates in program
runs. We have also formulated a sequence modeling task and train three distinct models for the same.
Based on the results of these models, we derived inferences stemming from the design and nature of
the underlying system.

For future work we propose to delve deeper into the question of what factors affect this predictability.
We need models that are engineered to better predict cache miss rates and the uncertainty surrounding
them. A Bayesian approach might add value in the sense that it gives us a distribution of future values
conditioned on the parameters of the model. From a systems standpoint, we envision using such a
model in a shared cache setting to allocate cache among different processes (e.g., to allocate real
memory used for paging). We can use such a model to predict future cache miss rates and to partition
memory accordingly.

References
[1] B. Alpern, S. Augart, S. M. Blackburn, M. A. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. J. Fink, D. Grove,

M. Hind, K. S. McKinley, M. F. Mergen, J. E. B. Moss, T. A. Ngo, V. Sarkar, and M. Trapp. The Jikes
Research Virtual Machine project: Building an open-source research community. IBM Systems Journal, 44
(2):399–418, 2005. doi: 10.1147/sj.442.0399. URL https://doi.org/10.1147/sj.442.0399.

[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult.
Trans. Neur. Netw., 5(2):157–166, Mar. 1994. ISSN 1045-9227. doi: 10.1109/72.279181. URL http:
//dx.doi.org/10.1109/72.279181.

[3] Y. Bengio, R. Ducharme, and P. Vincent. A neural probabilistic language model. In NIPS, 2000.

[4] B. T. Bennet and V. J. Kruskal. LRU stack processing. IBM Journal of Research and Development, 19(4):
353–357, 1975. doi: 10.1147/rd.194.0353. URL https://doi.org/10.1147/rd.194.0353.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,

4

https://doi.org/10.1147/sj.442.0399
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
https://doi.org/10.1147/rd.194.0353


D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In OOPSLA ’06: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages, and Applications, pages 169–190, New
York, NY, USA, Oct. 2006. ACM Press. doi: http://doi.acm.org/10.1145/1167473.1167488.

[6] M. Chiu and E. Moss. Run-time program-specific phase prediction for Python programs. In Proceedings
of the 15th International Conference on Managed Languages & Runtimes, ManLang 2018, Linz, Austria,
September 12-14, 2018, pages 1:1–1:10, 2018. doi: 10.1145/3237009.3237011. URL http://doi.acm.
org/10.1145/3237009.3237011.

[7] M.-C. Chiu, B. M. Marlin, and E. Moss. Real-time program-specific phase change detection for Java
programs. In PPPJ, 2016.

[8] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang, C. E. Kozyrakis, and P. Ranganathan.
Learning memory access patterns. In ICML, 2018.

[9] S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem solutions.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 6(2):107–116, Apr. 1998. ISSN 0218-4885. doi: 10.1142/
S0218488598000094. URL http://dx.doi.org/10.1142/S0218488598000094.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9:1735–1780, 1997.

[11] T. Linzen, E. Dupoux, and Y. Goldberg. Assessing the ability of LSTMs to learn syntax-sensitive
dependencies. Transactions of the Association for Computational Linguistics, 4:521–535, 2016. URL
http://aclweb.org/anthology/Q16-1037.

[12] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and Y. Bengio. SampleRNN:
An unconditional end-to-end neural audio generation model. In ICLR, 2017.

[13] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. Recurrent neural network based
language model. In INTERSPEECH, 2010.

[14] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary instrumentation. In
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementa-
tion, San Diego, California, USA, June 10-13, 2007, pages 89–100, 2007. doi: 10.1145/1250734.1250746.
URL http://doi.acm.org/10.1145/1250734.1250746.

[15] Standard Performance Evaluation Corporation. SPEC CPU 2000 benchmarks, 2000. URL http://www.
spec.org.cpu2000/.

[16] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS,
2014.

[17] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. W.
Senior, and K. Kavukcuoglu. WaveNet: A generative model for raw audio. In SSW, 2016.

[18] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. S. Corrado,
M. Hughes, and J. Dean. Google’s neural machine translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144, 2016.

5

http://doi.acm.org/10.1145/3237009.3237011
http://doi.acm.org/10.1145/3237009.3237011
http://dx.doi.org/10.1142/S0218488598000094
http://aclweb.org/anthology/Q16-1037
http://doi.acm.org/10.1145/1250734.1250746
http://www.spec.org.cpu2000/
http://www.spec.org.cpu2000/

	Introduction
	Models
	Experimental Results and Insights
	Discussion

