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Abstract

With increasing core counts in Chip Multi-Processor

(CMP) designs, the size of the on-chip communication fab-

ric and shared Last-Level Caches (LLC), which we term

uncore here, is also growing, consuming as much as 30%
of die area and a significant portion of chip power budget.

In this work, we focus on improving the uncore energy-

efficiency using dynamic voltage and frequency scaling.

Previous approaches are mostly restricted to reactive tech-

niques, which may respond poorly to abrupt workload and

uncore utility changes. We find, however, there are pre-

dictable patterns in uncore utility which point towards the

potential of a proactive approach to uncore power manage-

ment. In this work, we utilize artificial intelligence princi-

ples to proactively leverage uncore utility pattern prediction

via an Artificial Neural Network (ANN). ANNs, however, re-

quire training to produce accurate predictions. Architecting

an efficient training mechanism without a priori knowledge

of the workload is a major challenge. We propose a novel

technique in which a simple Proportional Integral (PI) con-

troller is used as a secondary classifier during ANN train-

ing, dynamically pulling the ANN up by its bootstraps to

achieve accurate predictions. Both the ANN and the PI con-

troller, then, work in tandem once the ANN training phase

is complete. The advantage of using a PI controller to ini-

tially train the ANN is a dramatic acceleration of the ANN’s

initial learning phase. Thus, in a real system, this scenario

allows quick power-control adaptation to rapid application

phase changes and context switches during execution. We

show that the proposed technique produces results compa-

rable to those of pure offline training without a need for

prerecorded training sets. Full system simulations using the

PARSEC benchmark suite show that the bootstrapped ANN

improves the energy-delay product of the uncore system by

27% versus existing state-of-the-art methodologies.

1 Introduction

Due to chip power density limitations as well as the re-
cent breakdown of Dennard’s Scaling [10] over the past
decade, performance growth in microprocessor design has
largely been driven by core scaling. These trends have led
to tens of cores, Chip Multi-Processor (CMP) designs, ex-
pected to grow to the thousands in the pursuit of exa-scale
computing [6]. Achieving a consistent performance scala-
bility in these designs to satisfy the demands of application

data growth, requires a super-linear expansion in the last-
level cache (LLC) size and on-chip communication band-
width. The “uncore” in modern CMPs, consisting of an on-
chip communication fabric and shared LLC, now occupies
as much as 30% of the overall die area [18]. As the uncore
expands relative the cores, occupying a greater portion of
the CMP’s real-estate, it has become a critical consumer of
the overall CMP’s power budget; therefore, energy-efficient
uncore operation is of paramount importance in restraining
the CMP’s overall power envelope.

To achieve such a goal, this work focuses on dynamic
voltage and frequency scaling (DVFS) for the CMP uncore.
Although DVFS has been extensively studied in the litera-
ture [5, 13, 20, 23, 25, 26, 28], previous works have been
mostly core-centric, i.e., they focus on reducing the power
consumed in cores, paying less attention on the uncore’s
power consumption. That is, they are restricted to either
core DVFS or DVFS voltage/frequency (V/F) domains par-
titioning around cores, merely including a slice of the un-
core. Classifying the uncore into separated V/F domains
incurs large performance overhead in communication, as
packets must pass between different V/F domains, experi-
encing synchronization delays at each hop.

In this work, we consider a different, but practical sce-
nario where the entire uncore comprises a single V/F do-
main. In such setting, data need not experience synchro-
nization delays in the network-on-chip (NoC) fabric inter-
connecting the cores. A few recent works seek to address
uncore and/or NoC power management via DVFS [19, 8, 7].
These approaches are largely reactive, i.e., they set V/F state
based purely upon past uncore state. Such approach works
well only when the uncore load and its performance impact
change slowly. In realistic applications, however, uncore
load and its utility (i.e. the system’s performance sensitivity
to the uncore) often have abrupt changes. A reactive con-
troller, such as a rule-based [19] or Proportional Integral
(PI) controller [8, 7], may tune the uncore V/F to a higher
level due to high load or poor performance observed in the
previous interval. Utility, however, can suddenly change in
the next interval, and a V/F increase consequently wastes
energy that could otherwise be saved.

To improve upon this behavior requires a more proactive
approach – a technique which can predict the load and make
corresponding decisions. This requires the controller to
maintain knowledge that associates past application behav-
ior patterns with future uncore utility. In this work, we ex-
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plore the use of an Artificial Neural Network-based (ANN)
technique to achieve the desired proactive/predictive con-
trol [21]. ANNs are a general neural model derived from bi-
ological systems, that can be applied to approximately clas-
sify nonlinear and dynamic behaviors. As such, ANNs are
particularly useful in identifying patterns in a current sys-
tem state and predicting future behavior accordingly. ANNs
have been used in branch prediction [31] and predicting
traffic congestion hotspots in NoCs [17]. For the purposes
of this work, we propose that the ANN is fed by the individ-
ual measured state of each core, together with some history
of recent state in those cores. Based upon this input, the
ANN will predict the future utility of the uncore, and the
V/F state will be traced and set appropriately. This predic-
tive control scheme allows faster, more proactive responses
to abrupt state changes. The ANN’s multi-input control is a
clear advantage versus the single-input PI control [8] where
information loss occurs during the data aggregation.

ANNs obtain their predictive ability via training of their
internal parameters (weights). Thus, in typical ANN ap-
plications, a priori training set including inputs and desired
output is required. For typical general-purpose processor
implementations, difficulties exist in developing representa-
tive training sets, as this requires offline analysis of captive
applications assumed to be similar to the expected workload
of the processor. Architecting an efficient training mecha-
nism without a priori knowledge of the workload’s behavior
is a significant challenge which we address in this work. We
propose a novel technique in which a simple PI controller is
used as a secondary classifier during a purely online train-
ing phase, dynamically pulling the the ANN up (by its boot-
straps) to accurate prediction. Since the PI controller itself
has been shown to produce reasonable power management,
we propose that both the ANN and the PI controller work
in tandem once the ANN training phase is complete. In this
work we investigate novel policies determining which con-
troller, the ANN or PI, should decide the next V/F state of
the uncore, as well as when and how to modulate ANN on-
line training during system runtime.

The individual contributions of this work are as follows:

• We develop an ANN-based mechanism for uncore
power management based upon offline training.

• We augment the offline-trained ANN controller with
online self-adaptation and show that it improves the
energy-delay product by 8% compared to a state-of-
the-art previous work [7].

• We propose a novel, purely-online, tandem ANN-PI
power manager, which further improves energy-delay
product by 27% versus prior techniques [7] while re-
moving the need for offline training. Compared to con-
stantly high uncore V/F, the performance degradation
from our approach is less than 3%.

• We examine the compute latency and power consump-
tion of the proposed software ANN implementation
versus a ANN hardware design, verifying that soft-
ware ANN delay impact is insignificant and incremen-
tal power is ∼ .32% of total CMP power.

2 Background

Here we first discuss Artificial Neural Networks (ANNs)
basics, and then we discuss how the V/F state interacts with
NoC and LLC (collectively referred to as the uncore).

2.1 Artificial Neural Networks

An ANN is an information processing paradigm, in-
spired by biological neural networks, that attempts to cap-
ture the learning behavior, response behavior and general
functionality of a biological central nervous system, so as
to emulate a form of intelligence artificially. An ANN con-
sists of computation nodes called neurons and interconnec-
tions between them, called synapses. ANNs are used to de-
termine relationships between sets of input data to sets of
output data, so as to identify and understand patterns.
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Figure 1: Model of a single neuron.

ANN networks are usually organized in layers of neu-
rons, where information processed from each subsequent
layer is fed as an input to the next layer, until the last layer
computes a useful result. This model, employed in this
work, is known as the multi-layer perceptron ANN. A typ-
ical single neuron model is depicted in Figure 1, and is de-
fined by Equation 1 [21]:

y = θ





n
∑

j=1

wjxj − u



 (1)

In this equation, x1, x2, · · · , xn are its inputs,
w1, w2, · · · , wn are the weight parameters, u is the
threshold parameter, θ is the activation function and y is its
output. The activation function can take various forms, e.g.

if θ is a step function, the output changes from 0 to 1 when
the weighted sum of the inputs is exceeds a threshold u.

While single neurons can perform classification func-
tions based upon their inputs, this function is limited to
linearly separable patterns [22]. Multi-level networks of
these perceptron models, i.e. ANNs, do not have this limi-
tation [15]. Here, each neuron is treated as a node, forming
directed graph with input and output edges. An example
ANN is illustrated in Figure 2, where each circle represents
a neuron. The ANN in Figure 2 does not contain any cycles,
and is therefore called a feed-forward ANN. Other ANN
variants exist which have cycles, however, we do not con-
sider them in this work, so as to reduce complexity.

An ANN is a very flexible framework, capable of model-
ing many different and complex systems, through configu-
ration of its topology, its activation functions and by tuning
its parameters. When the ANN is employed as a controller,



its output is the control variable and its inputs are from the
states/outputs of the system to be controlled. Through a
learning procedure, the ANN weights are tuned to associate
certain input patterns with a desired output(s).

There are two general forms of ANN learning algo-
rithms: supervised and unsupervised. Under supervised
learning, the ANN is typically trained iteratively with a data
set that has known solutions starting from an arbitrary set of
parameters. In each iteration, the ANN output is compared
to the known solution, and the parameters are tuned such
that the difference between them is reduced or converges,
i.e. they form a “good match.” For the simplest ANN, one
that has a single neuron, each input weight wj is updated by

wj(t+ 1) = wj(t) + g · (d− y) · xj (2)

where d is the known solution, g (0.0 < g < 1.0) is a
learning gain factor and t indicates iteration index.
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Figure 2: Multi-layer feed-forward ANN.

For a multi-layer network, the learning procedure in-
cludes two passes of backward traversals along the net-
work, from the output(s) to the inputs. The errors are back-
propagated in the first traversal and the edge weights are
updated during the second traversal [14]. We use a 2-layer
ANN topology in Figure 2, as an example, to illustrate this
process. The error, δk, is defined as δk = dk − yk for each
output node k. For each edge (j, k) between the middle
layer and the output layer, its weight is wj,k. The errors are
back-propagated to the middle layer and the error δj at each
middle layer node is obtained by

δj =
K
∑

k=1

(wj,k(t) · δk) (3)

where K is the fanout of node j. For the edge weight up-
date, we illustrate with the edges from the inputs to the mid-
dle layer in Figure 2. Let the weighted sum of inputs to node
j be ψj = Σwi,j(t) · xi. Edge weights wi,j are updated by

wi,j(t+ 1) = wi,j(t) + g · δj ·
dθ(ψj)

dψj
· xi (4)

This procedure is repeated for all edges in a layer-by-layer
backward traversal of the network.

2.2 Uncore Power Management

We consider a common case in multicore processor de-
sign where the entire chip is composed of an array of
identically-sized tiles. Each tile contains a processor core

and private caches. The communication fabric is a 2D mesh
NoC with one router residing in each tile. A shared LLC
is partitioned into slices and distributed uniformly among
these tiles. The NoC and the LLC together are referred
to as the uncore system. We further assume that the CMP
contains a Power Control Unit (PCU) [9]: a small micro-
controller with direct control of the uncore’s V/F state via
memory-mapped micro-architectural registers, which emu-
lates our proposed power management policy in software.
This PCU is associated with one of the central tiles in the
2D mesh as indicated by the darkened tile #6 of Figure 3.
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Figure 3: 16-core CMP in a 4 × 4 2D mesh array. The
darkened tile indicates location of the Power Control Unit
(PCU). The dashed lines indicate paths traversing the NoC.

Similar to the design originally proposed by Chen et
al. [8, 7], we assume that data (i.e. L1 Miss rate, the L2 Miss
rate, etc.) used in measuring uncore utility, are encoded into
the unused bits in the packet headers being routed onto the
NoC. This data is opportunistically collected when these
packets pass through the router containing the PCU (Fig-
ure 3). This approach minimizes the overhead of monitor-
ing, since no extra status packets are created, and there is
no need for a secondary overlay status network to convey
statistical uncore utility information. Although this implies
some staleness in the collection of status data, Chen et al.
found that, with appropriate extrapolation, the data obtained
produces results nearly indistinguishable from omniscient
data collection for the 50K-cycle control intervals [8].

2.3 PI controller

As a basis of comparison and as a subcomponent of
our design we also utilize a proportional-integral (PI) con-
troller [8, 7]. A PI controller has two components, the pro-
portional “P” component calculates error, et, as the differ-
ence between the reference value and measured output in a
closed loop. While the P component achieves steady-state
rapidly, it is highly sensitive to noise and thus can be vulner-
able to multi-core system input patterns which can change
dynamically. To increase robustness, the integral “I” of past
error is added in a weighted sum. The final output, ut of
the controller is calculated as shown in Equation 5. Kp and
Ki are the proportional and integral error gain, respectively,
and are typically determined empirically.

ut = Kpet +Ki

t
∑

k=1

ek (5)



3 Related Work: DVFS in Multicore Systems

Many works utilize Dynamic Voltage and Frequency
Scaling (DVFS) techniques to save energy; often, these
schemes are independently applied to either the NoC or
onto the cores to save power, but not holistically. The ear-
liest work, utilizing only dynamic voltage scaling (DVS)
by Shang et al.[28] regulated the voltage of individual NoC
links independently to save power during periods of link
under-utilization. Soteriou et al. also explored DVFS regu-
lation of links in NoCs. In this work DVFS-specific instruc-
tions were inserted into a given application, based upon pro-
filing, to instruct the voltage-frequency regulation of links
during run-time [30]. Son et al. proposed simultaneous
CPU-NoC link DVFS for a specific application – paral-
lel linear system solving [29]. Luo, et al., combined NoC
link DVS with task scheduling of embedded systems [20].
Ogras, et al., applied state-space control for DVFS on tile-
based designs where the NoC was partitioned and associ-
ated with processing cores [25]. Mishra et al. examined
DVFS in NoC router designs [23]. The work of Guang et
al. [13] partitioned a multi-core chip into voltage/frequency
islands and its NoC was also regionally mapped onto those
islands. They proposed a rule-based DVFS control for each
island according to queue occupancy. Next, Rahimi, et
al., proposed another rule-based DVFS based on both link
utilization and router queue occupancy [26]. Bogdan, et
al., described a DVFS approach based on a fractional state
model, where the NoC was also partitioned to be associated
with each voltage/frequency island [5]. There are very few
previous works addressing DVFS for caches. Flautner et al.
presented one such work, which applied DVS to individual
cache lines [12].

These previous works all partition the NoC or caches
into fine-grained voltage/frequency domains. Another re-
alistic scenario is that the NoC, or uncore, constitutes a sin-
gle V/F domain, such that the interfacing overhead can be
avoided [19, 8, 7]. Liang and Jantsch [19] tuned the volt-
age/frequency state of the NoC according to network load
as predicted by injection rate. Network congestion, how-
ever, is often a poor indicator of the entire chip’s perfor-
mance. Further, the DVFS policy in this work is a simple
rule-based approach. To capture the impact of the uncore
upon overall system performance, Chen, et al. [8], proposed
an approach using AMAT (Average Memory Access Time).
They employed a PI (Proportional and Integral) controller
to implement their DVFS policy. In a recent work, Chen et
al. [7] developed the concept of critical latency, the prod-
uct of LLC throughput demand and the latency of the LLC
and NoC, as an expression of uncore utility. This formula-
tion brings significantly more energy savings than any prior
work to-date. A dynamic reference technique was intro-
duced for the PI controller which also facilitates additional
energy-efficiency improvements. Collectively, these three
approaches can be broadly classified as reactive, i.e. the
V/F state for the next control interval is set based upon the
current state and some limited amount of history. In this
work, we propose a proactive mechanism, in which an ANN

is used to detect program phase patterns exhibited in uncore
utilization demands. Through finer ANN-based predictions,
the controller can make the uncore V/F level better trace the
uncore utility changes, and discover opportunities for addi-
tional energy savings without degrading the performance of
the uncore.

Bitirgen and et al. examined the use of an ANN to
manage shared resource allocation in a multicore environ-
ment [4]. They show an ANN can be an effective tool for
complex management problems within a given hardware
budget. Unlike this prior work, here we examine the use of
an ANN for a different problem power management of the
LLC and interconnect. Further, we explore the means of
using a secondary classifier to provide online training and
collaborative control.

4 Tandem ANN and PI Control
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Figure 4: Architecture of the uncore DVFS control system.

An overview of the proposed uncore DVFS control sys-
tem is depicted in Figure 4. Besides an ANN controller,
it includes a PI controller, as the PI controller plays a role
complementary to the ANN control and has very low over-
head. The center of this system is the coordination between
the two controllers. In this section, we will first introduce
the ANN controller architecture. Then, we will describe the
ANN learning including how to utilize the PI controller for
a bootstrapped learning. The last part will be on the new
techniques of tandem ANN-PI control operations.

4.1 ANN Controller Architecture

The output of our ANN controller is the uncore V/F
level. Its inputs should reflect the uncore performance as
well as how sensitive whole system performance is to un-
core latency, effectively a measurement of the uncore’s util-

ity to the system. To this end, we adopt the critical latency

metric introduced by Chen et al. [7], which is defined as

Γ = η · λU (6)

where λU is the uncore latency and η is the criticality factor.
The uncore latency covers the overall request excluding the
memory access latency, i.e., NoC travel latency plus LLC



access latency. The criticality factor is the product of pri-
vate cache miss rate and the ratio of load instructions versus
total instructions. Chen et al.[7] collect the critical latency
data from all cores and average them into a single value as
the input to a PI controller. In contrast, an ANN controller
can directly process multiple inputs, and is therefore able to
utilize detailed, per-core information.

The DVFS control action is performed periodically in
every control interval I. Since the ANN controller accepts
multiple inputs, it may examine monitored Γ of an arbitrary
number of history intervals. Thus, if the ANN controller ex-
amines the past m intervals, including the current interval,
and there are n cores, then it has m · n inputs.
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Figure 5: Proposed 3-layer feed-forward ANN.

From the inputs to the output, there can be different num-
bers of layers of neurons, which implies a tradeoff between
capability and overhead. From our experience, a 3-layer
structure performs well and has limited overhead. Such a
structure is depicted in Figure 5. If the uncore V/F has k
levels, we use k outputs, each of which indicates the selec-
tion of a corresponding V/F level. The value of each output
is a number between 0 and 1. Since an output can take frac-
tional value, we use a comparator to select the output with
the maximum value, and round the other outputs to zero.

For the activation functions, we employ the commonly
used Gaussian functions defined by

f(x) = ae−
(x−b)2

2c2 (7)

We set a to 1 to maintain the neuron’s output dynamic range
between 0 to 1. Parameters b and c can be adjusted accord-
ing to input values which is introduced in Equation (6). The
learning algorithm here is the common back propagation al-
gorithm described in Section 2.1.

4.2 ANN Learning
ANN learning is a procedure of identifying/improving

the weight parameters based upon the expected output(s) for
a given input set. ANN learning can be carried out offline
or online. The basic supervised learning is introduced in
Section 2.1. In Section 4.2.1, we describe how to apply tra-
ditional supervised learning offline for our ANN controller.
New online self-adaptation techniques for tuning the ANN
controller are discussed in Section 4.2.2. We propose an
“up by the bootstraps” learning technique using PI control
as a secondary classifier in Section 4.2.3.

4.2.1 Offline Supervised Learning

In offline supervised learning, first a set of cases with
known solutions for ANN training is created. Since the
DVFS control is carried out periodically for each control
interval, this set should include the target uncore V/F level
of every control interval. The target level should be the op-
timal level defined by the minimum uncore V/F level such
that the runtime increase is no more than α% compared with
the highest V/F level, where α is a parameter. Ideally, the
optimal V/F level can be found by enumerating all combi-
nations, e.g., simulate all V/F levels in interval Ii and then
simulate all V/F levels in interval Ii+1 for every case at Ii.
By approximation, we enumerate uncore V/F levels for the
entire trace, i.e., if there are k V/F levels, the entire trace
is simulated for k times, each with a different uncore V/F
level. These simulation results are partitioned into control
intervals and the target V/F level is chosen for each interval.

The interval partitioning starts with simulation result of
the highest frequency, i.e., uncore frequency is fmax, and
each interval consists of κ clock cycles. Finding the cor-
responding intervals of other simulations with different un-
core V/F is challenging, as the executed instruction count
in multithreaded benchmarks tends to vary with uncore V/F
state1. In lieu of instruction count we use a count of the
number of committed store instructions from each thread,
as this number tends to be invariant with uncore latency, to
determine overall runtime of equivalent intervals from one
uncore V/F to the next. For example, if there are 9876 store

instructions in the first interval for uncore frequency fmax,
we define the first interval for other uncore frequency traces
f < fmax by the cycle when the 9876th store instruction is
committed. This procedure is repeated for subsequent inter-
vals and all k uncore frequency levels. For each interval, the
target frequency is the minimum one such that the runtime
of this interval is no greater than (1 + α%) · κ clock cycles,
where the cycles are in terms of fmax.
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Figure 6: Input and target sets for ANN learning.

The ANN controller decides the uncore V/F level of in-
terval Ii+1 based on the critical latencies observed from
n cores of the last m intervals. Likewise, we use the the

1Spin-locks and other synchronization primitives tend to vary in in-
struction counts when uncore latency is changed.



critical latencies of all n cores across intervals Ii−(m−1),
Ii−(m−2), · · · , Ii and the target uncore frequency at inter-
val Ii+1 as one training set. Figure 6 shows a simple exam-
ple with m = 1 where the shaded intervals correspond to
the target frequencies and si is the number of store instruc-
tions at interval Ii. In interval 1, the Γ1,1/3 is the observed

critical latency when the uncore operates at f1 = 1
3fmax.

The critical latency Γ1,1/3 for all cores, and the target fre-

quency f2 = 1
2fmax of interval 2, form a data set for the

supervised learning. This procedure is repeated for Γ2,1/2

and f3 = fmax, and so on. Once the training data sets are
obtained, supervised learning is performed as described in
Section 2.1.

4.2.2 Online Self-Adaptation

While offline supervised learning can produce good re-
sults, it has a weakness. The actual applications may have
quite different characteristics from the training cases. In
other words, an ANN well-trained for certain workloads
may perform poorly on different workloads (i.e. the work-
loads it was not trained on). To overcome this weakness,
we propose two online self-adaptation techniques: feedback
adaptation and self-sharpening.

Feedback Adaptation: Feedback adaptation is similar
to supervised learning described in Section 2.1 except that
the target frequency is obtained online as in the case of feed-
back control. In typical feedback control techniques, such
as PI control [8], the controller attempts to correct the error
of the system’s output with respect to a reference. The error
at interval Ii is defined by

ei = Γi − β · Γref,i (8)

where Γi is the critical latency observed during interval Ii,
β is a coefficient, and Γref,i is the reference. We adopt the
idea of dynamic reference [7], which is the critical latency
when no data packet experiences queuing delay. The coef-
ficient β is typically selected to have a value of 1.1, imply-
ing that a small queuing delay during NoC congestion is al-
lowed. The adaptation action is taken only if the error mag-
nitude |ei| is greater than a certain threshold τ . If there is
a large positive (negative) error, we set the target frequency
to be one level above (below) the uncore frequency used in
interval Ii. This target frequency together with the critical
latencies of all cores across intervals Ii−m, Ii−(m−1), · · · ,
Ii−1, form a data set to train the ANN once. Such trainings
are interleaved with the ANN control operation and thus can
be conducted at run-time.

Self-sharpening: The self-sharpening technique is
based on the observation that the ANN should ideally
have one output of value 1, while the other outputs have
a value of 0. In typical operations, however, the ANN
produces a set of fractional outputs in [0, 1]. Thus, if
the ANN output is {0.1, 0.2, · · · , 0.9}, the uncore fre-
quency selection is effectively the same as if the output is
{0, 0, · · · , 1}. Under self-sharpening, we set the ANN out-
put error as {−0.1,−0.2, · · · , 0.1} and back propagate this
error through the ANN, as carried out with supervised learn-
ing, reinforcing the ANN’s decision.

4.2.3 Bootstrapped Learning Using a PI Controller

Although the self-adaptation techniques presented in
Section 4.2.2 can improve upon the performance of offline
supervised learning by refining the ANN’s behavior accord-
ing to the actual workload demands, it cannot completely
replace offline learning2. General-purpose CMP workloads
can vary so greatly that developing a representative set, at
design time, for training may be impossible. Therefore, an
ANN controller design which does not rely on offline learn-
ing is often desirable. Ideally, one would prefer the ANN
training as purely online, i.e. during the application’s run-
time, without the need for an a priori training set. There are,
however, several challenges to this form of pure, “up by its
bootstraps”, online training. For example, online training
requires knowledge of the desired output for any given in-
put, at runtime, before the ANN itself is trained well enough
to produce that output. Although the PI controller [8, 7] has
its weakness, it has very low overhead and it requires very
little start-up delay in producing V/F control at its best abil-
ity. We thus propose instantiating a PI controller for online
training of the ANN. In this “bootstrapped” learning, the
ANN learns from the PI controller while the PI controller is
controlling the V/F state of the uncore. Hence, the PI con-
trol is a surrogate for the training set in supervised learning.
The PI controller provides a realistic, dynamically gener-
ated training set for online ANN training. When combined
with continuous online self adaptation (feedback-adaption
and self-sharpening described in Section 4.2.2) the ANN
can exceed the performance of the PI controller. In Sec-
tion 4.3, we will show that the PI controller may also be
used for tandem control once the ANN is trained as well.

The offline supervised learning is often conducted based
upon complete traces of many applications. By contrast,
bootstrapped learning is performed during the beginning
phases of each single application. Hence, it should be
much faster and requires a greater learning gain (see Equa-
tion (2)). Furthermore, bootstrapped learning is focused on
the behavior of a single, ongoing application, while the of-
fline supervised learning is intended to be more general. As
a result, bootstrapped learning is much more focused to the
application at hand and can perform significantly better.

Figure 7 compares the bootstrapped learning with dif-
ferent gains applied to the Bodytrack application of PAR-
SEC benchmark suite [2]. The x-axis holds the indication
of the control interval, and the y-axis indicates the uncore
frequency selection in terms of the ratio of fmax versus un-
core frequency; for example, value 4 implies that the un-
core frequency is 1

4fmax. The green crosses are the V/F
selections chosen by the PI controller, the red dots are those
chosen by the ANN, and the blue circles represent the dif-
ferences between them. Figure 7a shows the results with a
learning gain of g = 0.001, which is common for the of-
fline supervised learning. One can see that the ANN output
remains quite different from the PI controller’s output after

2We explored purely online training with the techniques discussed in
Section 4.2.2, however the results were poor due to the long training time
required, these results were dropped from this paper for brevity.
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Figure 7: Bootstrapping learning applied to the Bodytrack application of the PARSEC benchmark suite [2].

200 intervals. Experimental results with g = 0.1 are shown
in Figure 7b, which exhibits that the ANN output starts to
follow the PI control after approximately 100 intervals.

4.2.4 Variable Learning Gain

To further improve the learning efficiency, we propose a
variable gain scheme, which can be applied with the boot-
strapped learning and the online self-adaptation. In this
scheme, the gain g can vary in a range [gmin, gmax] accord-
ing to the error ei defined by Equation (8). A small (large)
error means the result is close to (far from) a desired one,
based on which the learning should be more (less) empha-
sized and use a large (small) gain. Using this rationale, the
variable gain is given by

gi =











gmax if ei ≤ τ

gmax −

(

ei−τ

emax−τ

)

· (gmax − gmin) if τ < ei < emax

gmin otherwise

(9)

where τ and emax are two constant parameters.

4.3 ANN-PI Tandem Control

As discussed in Section 4.2, the ANN controller pro-
actively adjusts the uncore V/F level according to its ex-
perience, learned either offline or bootstrapped online. This
methodology, however, may not always be accurate. One
can predict rain from heavy clouds, but heavy clouds do
not always yield rain. Alternately, the PI controller al-
ways bases its V/F selection only upon current observations.
Thus, ANN control and PI control can be viewed as comple-
mentary to each other. We propose three ANN-PI tandem
control schemes, elaborated next.

4.3.1 ANN-Centric Tandem Control

In the first scheme, ANN-Centric Tandem Control, after
the ANN is fully trained, both the ANN and PI controllers
make their V/F selection for the next control interval. One

of their results is chosen to be applied to the uncore. The
choice depends on the average error defined by

ēi =

∑i
j=i−m+1

∑n
l=1 ej,l

m · n
(10)

where ej,l is the error defined in Equation (8) for control in-
terval Ij and core l. This is the average control error among
all n cores across the past m control intervals. The choices
also rely on the consistency (ξi) between ANN and PI con-
trol, which is defined as

ξi = 1−





i
∑

j=i−m+1

|fj,ANN − fj,PI |

k − 1



 /m (11)

where k is the number of uncore V/F levels, fj,ANN (fj,PI )
is the uncore frequency level computed from the ANN (PI)
in control interval Ij . In dividing with k− 1, the difference
is normalized to be no greater than 1. The second term in
Equation (11) is the average normalized difference between
the ANN and the PI computed results in the past m inter-
vals.

The rules for the choices between the PI or the ANN are
listed in Table 1. The first row says that the ANN result
will be chosen for interval Ii+1 if the control in interval Ii
is based on the PI, the average error (ēi) is small and the
consistency between the ANN and the PI results (ξi) is low.
According to the second row, if the PI is chosen for interval
Ii, the average error is low, and the consistency is high, then
the PI control result is chosen for interval Ii+1. The other
rows of Table 1 can be interpreted in the same way.

This scheme is intentionally biased in favor of the ANN,
only in rows 2 and 7, where the advantage of PI is obvious,
is the PI controller chosen for the next control interval. In
all the other cases, the ANN result is selected for actual use.



Ii ēi ξi Ii+1

PI ↓ ↓ ANN

PI ↓ ↑ PI

PI ↑ ↓ ANN

PI ↑ ↑ ANN

ANN ↓ ↓ ANN

ANN ↓ ↑ ANN

ANN ↑ ↓ PI

ANN ↑ ↑ ANN

Table 1: Rules governing the choice between the ANN con-
troller and the PI controller decision under ANN-centric
tandem control. Parameter ēi represents the error occurred
in previous V/F selections, and ξi represents the consistency
between the ANN and PI controller decisions.
The intent under this technique is to select the ANN as soon
as it begins producing reasonably accurate results, under the
assumption that the ANN can perform better in the long run
once training is complete.

4.3.2 Eager Tandem Control

We introduce an alternative scheme for the ANN-PI tan-
dem control, which is solely based on the control error
ei (defined by Equation (8)) at the control interval Ii. If
ei > τ > 0 (ei < −τ < 0), where τ is a threshold, and the
critical latency is significantly greater (less) than the refer-
ence, then the higher (lower) frequency between the ANN
and PI results is chosen for the next interval Ii+1. The ra-
tionale for this technique is the same as that of the feedback
adaptation technique described in Section 4.2.2, except that
it is directly applied to control decisions, while the adapta-
tion is to improve the ANN.

4.3.3 Credit-Based Tandem Control

As another variant of the eager tandem control scheme,
we concentrate not only to ei, but also to the method se-
lected in interval Ii. If ei > τ > 0 (ei < −τ < 0) and the
method chosen in Ii gives the higher (lower) frequency, this
method is more credible and will be chosen again for Ii+1.
Otherwise, the other method is chosen for Ii+1. Although
this scheme also uses ei as in the eager tandem control, the
ei here is employed to compare which method performs bet-
ter in Ii. The one which performs better in Ii is assumed
more trustworthy.

5 Design Implementation

In this section we describe the implementation details in-
cluding monitored data collection and control computation.
For data collection, we employ a similar scheme to that pro-
posed by Chen et al. [8]. As with their work, there is a PCU
(Power Control Unit) [9], which is a microcontroller which
handles power management for the CMP system. The mi-
crocontroller is similar to that utilized in current CMP de-
signs such as in the Intel i7 [18]. Every core collects its
critical latency Γ information, and encodes it (piggy-backed
in the header flit) onto the unused bits of each outgoing
packet. If a packet passes by the PCU, even when the cor-
responding tile is not its destination, the Γ information is
downloaded to the PCU. The PCU retains all relevant data

in its local memory. We have experimentally verified that
the proposed monitor technique incurs negligible error rela-
tive ideal monitoring. More details about the data collection
design can be found in the prior work of Chen et al. [8, 7].

In our design, all computation required by our schemes is
performed in emulation, by running software onto the PCU
(i.e. there is no actual ANN hardware, the ANN is emulated
in software on the PCU). The computation mainly consists
of (a) computing the PI control decision, (b) ANN training,
(c) computing the ANN control decision, and (d) choos-
ing between the ANN and PI results in the tandem control
schemes. Items (a) and (d) exhibit very low complexity, and
their overhead is negligible relative to our control interval
size. The ANN training process, including self-adaptation
and bootstrapped learning, does not block the ANN control
computation, and is therefore not timing-critical. We there-
fore focus here on estimating the computational cost of the
ANN control decisions. Table 2 shows the ANN control
computation runtime with different numbers of history in-
tervals. These data are obtained based on a baseline 16-core
CMP design. As it would be expected, the computational
overhead increases with the number of history intervals.

# history Runtime Runtime Total
intervals @hidden layer @output layer runtime

10 27,513 1,741 29,254

5 13,779 1,741 15,520

1 2,772 1,741 4,513

Table 2: ANN control computing runtime in PCU clock cy-
cles.

As in the work by Chen et al. [8, 7], we assume a con-
trol interval to be 50 thousand core clock cycles. The ANN
control computation accounts for a significant portion of the
overall control interval. In order to minimize the negative
effect of this latency, we use two sets of different intervals
for the critical latency monitoring and the control output
change as illustrated in Figure 8. The two sets of intervals
are offset by the ANN control computation time, effectively
pipelining the overhead. By doing so, the ANN control
computing does not block either the monitoring process or
the control output change. However, the ANN computation
does lead to increased staleness in the monitored data by
the time the control decision is implemented. The impact of
this computational latency is examined in Section 6.2.5.

Monitor Intervali Monitor Intervali+1

ANN

Computing

Overhead

Control Intervali Control Intervali+1

ANN

Online

Learning

Figure 8: Pipelined monitoring and control intervals.

6 Evaluation

In this section, we describe our experimental setup and
subsequent evaluation of our proposed techniques.



Parameter Configuration

# of cores 16

Core frequency Fixed at 1GHz

L1 data cache 2-way 256KB, 2 core cycle latency

L2 cache (LLC)
16-way, 2MB/bank, 32MB/total
10 core cycle latency

Directory cache MESI, 4 core cycle latency

NoC
4x4 2D mesh, X-Y DOR
4-flits depth/VC

Uncore V/F
10 levels, voltage: 1V - 2V
frequency: 250MHz - 1GHz

Control interval 50000 core cycles

V/F transition 100 core cycles per step

Table 3: System parameters used for full-system simula-
tions.
6.1 Experiment Setup

The experimental baseline platform is a 16-core CMP
with a 2-level cache hierarchy, split L1i and L1d private
caches, and a combined, shared L2 last-level cache. Cache
coherence is maintained via a MESI directory cache coher-
ent protocol. The NoC topology is a 4 × 4 2D mesh, with
each node/router attached to a single processor core. Table 3
summarizes the baseline CMP setup.

Simulation experiments are performed using the
gem5 [3] full system simulator, with the Ruby memory
model and the Garnet network simulator [1]. The bench-
mark applications are taken from the PARSEC shared-
memory, multi-processor, benchmark suite [2]. Specif-
ically, we use the 11 PARSEC benchmarks currently
supported by our simulation infrastructure, Blackscholes,

Bodytrack, Canneal, Dedup, Ferret, Fluidanimate, Fre-

qmine, Streamcluster, Swaptions, Vips, and X264. In each
case, the entire benchmark is simulated, but only the Re-
gion Of Interest (ROI), is evaluated. The performance met-
ric is evaluated as the runtime of the entire ROI. The energy
consumption evaluation includes both dynamic and leakage
energy. ORION 2.0 [16] and CACTI 6.0 [24] are used to
estimate the energy consumption of the NoC and the LLC,
respectively, both of which are based on 65nm CMOS pro-
cess technology.

To focus on the evaluation of our uncore DVFS tech-
niques, the core frequency is fixed at 1GHz throughout
the simulations. There are 10 uncore frequency levels be-
tween fmax = 1GHz and 250MHz. For each frequency,
there is a corresponding voltage level between 1V and 2V ,
which is roughly the minimum voltage allowing correct un-
core operation. The control interval is 50 thousand unscaled
core clock cycles at 1GHz and each step uncore V/F level
change takes 100 core cycles (100 cycles per step is suffi-
cient assuming on-die regulation [11]). During V/F transi-
tions, the uncore operation is halted.

The ANN configuration is summarized in Table 4. The
ANN inputs are the critical latencies as viewed by each of
the 16 cores in the past 5 intervals; thus the ANN has 80
first-layer nodes. The hidden layer and the output layer each
has 10 nodes. The learning gain g is set to 0.001 for the of-
fline learning. For the bootstrapped learning, the gain is
either set at 0.1 or set as a variable value between 0.001 and
0.1, as described in Section 4.2.4. The error threshold τ , er-

Parameter Configuration

# history intervals 5

# nodes at input layer 5 × 16

# nodes at hidden layer 10

# nodes at output layer 10

Offline learning gain 0.001

Constant bootstrapped learning gain 0.1

Variable bootstrapped learning gain [0.001, 0.1]
Error threshold τ 0.001

Max error bound emax 0.1

Consistency threshold ξ 0.6

Computing overhead 15K core cycles

Table 4: ANN configuration parameters.
ror bound emax, and consistency threshold ξ are used in the
tandem control. The values of these parameters are identi-
fied empirically. Each ANN control computation takes 15
thousand core cycles, but does not block any uncore opera-
tions (see Section 5).

6.2 Experimental Evaluation

6.2.1 Overall Results

We compare the following 6 methods:

Baseline: the uncore constantly operates at highest V/F.
PI: best method from Chen et al. [7].
Offln+Adpt+TdEager: ANN trained with offline learn-

ing, operates with self-adaptation and eager tandem
control.

Bstrp+Adpt: bootstrapped learning, self-adaptation and
ANN control.

Bstrp+Adpt+TdANN: bootstrapped learning, self-
adaptation and ANN-centric tandem control.

(Bstrp+Adpt)VG+TdANN: bootstrapped learning and
self-adaptation with variable gain, ANN-centric tan-
dem control.

Among the many techniques we investigated, the above
includes only the best offline learning-based method and
three best bootstrapped learning-based approaches. The re-
sults are normalized with the baseline and displayed in Fig-
ure 9. Compared to the PI control [7], our best method can
reduce the uncore energy and the energy-delay product by
25% and 27%, respectively. The performance degradation
from our DVFS is less than 3% of the baseline. All appli-
cations show improved energy-delay versus PI control ex-
cept Blackscholes. Blackscholes presents some difficulties
for the ANN as it has two very short phases (beginning and
end of simulation) with many misses, broken up by a long
phase with few misses. Hence, the ANN’s training on the
initial phase is to short to be beneficial for that phase, nor it
is useful for the middle phase. Similarly the final phase is
ill-served by the training on the middle phase.

The energy-performance tradeoffs of our offline and
bootstrapped learning schemes are depicted in Figure 10.
To produce the results displayed in Figure 10, we found the
average energy delay (ED) across all PARSEC benchmarks
for each of the three techniques while sweeping many of the
various parameters of each technique. The Pareto optimal
points for each of the PI control, offline and bootstrapped
methods were then plotted as shown in Figure 10. As the
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Figure 9: Overall full-system experimental results.

same figure shows, offline learning-based methods gener-
ally dominate the PI control-based methods primarily due
to their superior runtime. All PI and offline results are both
dominated by bootstrapped learning in terms of both energy
and runtime.
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Figure 10: Pareto optimal points and normalized energy-
normalized run-time curves for PI control-, offline-, and
bootstrapped learning-based methods.

In the remainder of this section we explore and analyze
the behavior of our proposed techniques across several axes.
All of the subsequent results are the average among the 11
PARSEC benchmarks.

6.2.2 Effect of Online Self-Adaptation on Offline vs.
Bootstrapped Learning

Figure 11 shows the benefit of the online self-adaptation
(see Section 4.2.2) on two options of the pre-operational
learning for ANNs: the offline supervised learning (Sec-
tion 4.2.1) and the online bootstrapped learning (Sec-
tion 4.2.3) to determine the effect of training on a generic
set versus training specifically on the application to be run.
Under offline supervised learning, the ANN is trained using
the entire PARSEC benchmark suite, except the benchmark
under test. The number of required iterations depends on
the size of learning gain. When bootstrapped learning is
conducted initially, we found experimentally that 600 inter-
vals and 0.1 learning gain is sufficient to train the ANN.

After the training phase, the ANN controls the uncore
DVFS without any self-adaptation to isolate the effects of
the pre-operational learning as shown to color-filled shapes.
Blue-filled diamond and red-filled triangle show the results
of these two methods. For reference, we also include the
equivalent results of the PI controller [7] which is shown as
green-filled circle. It is clear that the bootstrapped learn-
ing significantly outperforms the offline supervised learn-
ing. This result highlights the benefits of learning on the
specific application to be run versus a generic set of differ-
ent applications.

The unfilled shapes show the benefit of the online self-
adaptation (see Section 4.2.2). From Figure 11, it is clear
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Figure 11: Effect of online self-adaptation. ED:
energy×delay product.

that self-adaptation benefits both offline supervised learning
and the bootstrapped learning, significantly improving the
energy-delay product. The benefit comes with a trade-off in
runtime degradation for greater energy savings.

6.2.3 Effectiveness of ANN-PI Tandem Control

Three ANN-PI tandem control techniques are proposed
in section 4.3: ANN-centric tandem (TdANN), eager tan-
dem (TdEager) and credit-based tandem (TdCredit). Fig-
ure 12 shows the results of these techniques integrated
with the offline learning and online self-adaptation. They
are compared with the result only when using the offline
learning and online self-adaptation. It can be seen that
the tandem control techniques improve the overall energy-
performance tradeoff.
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Figure 12: ANN-PI tandem control based on offline super-
vised learning.

6.2.4 Effect of Variable Learning Gain

In Section 4.2.4, the variable gain learning technique
is proposed to improve the efficiency of the bootstrapped
learning and self-adaptation. Here we show its effective-
ness by comparing it with learning under a constant gain
using two approaches (1) offline learning + self-adaptation

+ ANN-centric tandem control, and (2) bootstrapped learn-
ing + self-adaptation + ANN-centric tandem control. The
results in Figure 13 show that the variable gain causes a 2%
reduction in energy and a 1% increase in runtime. Overall,
it reduces the energy-delay product by 6− 8%.
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Figure 13: The effect of variable learning gain.

6.2.5 ANN Overheads

We use the bootstrapped learning and the ANN-centric
tandem control as a platform to evaluate the impact of the
ANN computation overhead.

The ANN computation is performed in the CMP’s power
control unit (PCU), a small microcontroller on die. The de-
lay for the PCU to compute the next time window’s DVFS
set point is 15K cycles and online ANN learning compu-
tation requires an additional 18K cycles. The ANN imple-
mentation thus consumes 66% of the 50K cycles of each in-
terval, as shown in Figure 8. Compared to the total CMP
power, the incremental power required by the PCU due
to the ANN implementation represents a negligible .32%
increase. The ANN controller program occupies 7KB of
text and 5KB for data memory in the PCU’s memory. We
also conducted a cost/benefit analysis of a hardware ANN
implementation. Leveraging data from a recent work by
Rasheed [27], we estimate the computational delay of the
same ANN controller designed in hardware to be a negligi-
ble 93 cycles, while the incremental average power increase
over the software implementation would be ∼ 49.83mW ,
assuming the ANN is power gated when not in use. Due to
the reduction in computation latency, the hardware ANN
implementation yields a small improvement of less than
.2% energy saving and 1% performance increase relative the
software implementation. Thus, while the hardware ANN
does slightly improve performance, the requirement for ex-
tra hardware design makes the software implementation of
the ANN controller a more attractive option.

7 Conclusions

The CMP uncore constitutes a significant and increas-
ing part of overall CMP power dissipation. This work fo-
cused on Dynamic Voltage and Frequency Scaling (DVFS)
of the uncore. To fine-tune DVFS uncore control, and



achieve the best possible power savings, while maintain-
ing high performance in the entire CMP, various Artifi-
cial Neural Network-based (ANN) techniques are explored.
Conventional ANN approaches rely on offline learning,
which is inadequate to handle the large variety of realis-
tic CMP applications. We propose novel approach, wherein
a Proportional-Integral (PI) controller, which can adapt to
short system changes, but lacks long-term pattern recogni-
tion, is used in tandem with the ANN, bootstrapping the
ANN during the ANN’s initial learning process. This is
beneficial when the CMP chip swaps between various ap-
plications rapidly, or when program phases change rather
frequently, imposing varying utility demands upon the un-
core. Compared to a state-of-the-art previous work, the new
approach can reduce the energy-delay product by 27%.
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