
ApDeepSense: Deep Learning Uncertainty
Estimation Without the Pain for IoT Applications

Shuochao Yao∗, Yiran Zhao∗, Huajie Shao∗, Chao Zhang∗, Aston Zhang†,
Dongxin Liu∗, Shengzhong Liu∗, Lu Su‡, Tarek F. Abdelzaher∗

∗University of Illinois at Urbana-Champaign, †Amazon AI, ‡State University of New York at Buffalo

Email: {syao9, zhao97, hshao5, czhang82, lzhang74, dongxin3, sl29}@illinois.edu, lusu@buffalo.edu, zaher@illinois.edu

Abstract—Recent advances in deep-learning-based applications
have attracted a growing attention from the IoT community.
These highly capable learning models have shown significant
improvements in expected accuracy of various sensory inference
tasks. One important and yet overlooked direction remains to
provide uncertainty estimates in deep learning outputs. Since
robustness and reliability of sensory inference results are critical
to IoT systems, uncertainty estimates are indispensable for IoT
applications. To address this challenge, we develop ApDeepSense,
an effective and efficient deep learning uncertainty estimation
method for resource-constrained IoT devices. ApDeepSense lever-
ages an implicit Bayesian approximation that links neural net-
works to deep Gaussian processes, allowing output uncertainty to
be quantified. Our approach is shown to significantly reduce the
execution time and energy consumption of uncertainty estimation
thanks to a novel layer-wise approximation that replaces the
traditional computationally intensive sampling-based uncertainty
estimation methods. ApDeepSense is designed for neural net-
works trained using dropout; one of the most widely used
regularization methods in deep learning. No additional training
is needed for uncertainty estimation purposes. We evaluate
ApDeepSense using four IoT applications on Intel Edison devices.
Results show that ApDeepSense can reduce around 88.9% of
the execution time and 90.0% of the energy consumption, while
producing more accurate uncertainty estimates compared with
state-of-the-art methods.

Index Terms—Deep learning; Internet of Things; Uncertainty
estimation; Mobile computing;

I. INTRODUCTION

Sensory measurements on IoT devices have been widely

explored for diverse physical context inference and decision-

making tasks. A broad variety of applications have been

proposed in the areas of health and well-being [1]–[3], tracking

and localization [4]–[7], physical state monitoring [8]–[11],

and crowd sensing [12]–[14]. An important part of these suc-

cessful applications is usually a learning model that predicts

target quantities or states based on sensory inputs.

With recent breakthroughs in deep learning, attempts to

apply deep neural networks as learning models within IoT

systems have shown impressive results in a large number of

applications [15], including audio sensing [16], tracking and

localization [17], human activity recognition [17], [18], psy-

chological state prediction [19], and user identification [17].

Compared with traditional machine learning models, these

highly capable deep neural networks are better at making

sophisticated mapping between input sensory measurements

and the predicted quantities or states of interest.

Despite the fact that deep learning research has made such

significant improvements in various estimation, classification,

and prediction tasks [16], [17], concerns remain that hinder

practical deployment of deep neural networks in the context

of IoT applications. One important concern is the absence

of efficient and accurate solutions for quality assessment of

deep learning outputs. Such assessments are indispensable for

applications that interact with the physical world, where errors

may have adverse economic, mission, or safety consequences.

In a deep neural network, the stacked non-linear structures

cause tremendous difficulties analyzing and interpreting their

behaviors [20]. Therefore, practitioners either mistrust neural

networks altogether or blindly trust them without a principled

understanding of the underlying uncertainties.

In this paper, we address the aforementioned problem by

developing an approach for estimating uncertainty in neural

network outputs (i.e., output uncertainty).

Estimating output uncertainty of neural networks running

on IoT devices is a challenging task. In principle, one can

empirically estimate uncertainty through extensive testing.

However, this would take a lot of energy and overhead. Il-

luminating studies from the machine learning community [21]

recently provided exciting theoretical foundations for output

uncertainty estimation by proving an equivalence between

deep neural networks (with dropout regularization) and varia-

tional Gaussian processes. Yet, their proposed solution is not

resource-friendly, because it is a sampling-based solution. In

order to generate enough output samples for estimating output

mean and variance, the solution has to run a stochastic neural

network multiple times [21]. As such, it is unsuitable for

low-end IoT devices. A recent study proposes an uncertainty-

aware deep learning model for IoT applications that aims

to reduce energy and time consumption [22]. The proposed

solution, however, requires re-training the neural network to

generate output uncertainty estimates, which is inefficient for

IoT applications with pre-trained neural networks1.

To this end, we propose ApDeepSense that enables pre-

trained deep neural networks with dropout regularization to

generate output uncertainty estimates in a computationally

efficient manner without any re-training. To the best of our

knowledge, this is the first paper that directly enables existing

1https://github.com/tensorflow/models/tree/master/research/slim#Pretrained
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dropout trained neural networks to efficiently generate output

uncertainty estimates on resource-limited devices.

The basic idea of ApDeepSense is to replace the resource-

hungry sampling approach with efficient layerwise distribu-

tion approximations amenable to closed-form representations.

ApDeepSense extends the original operations performed on

signals inside a neural network, such as matrix multiplication

and activation functions, to apply to inputs described by prob-

abilistic distributions. A closed-form Gaussian approximation

is then optimally fitted to best approximate the true output

distribution of each operation by minimizing the Kullback-

Leibler (KL) divergence. In order to find closed-form so-

lutions for distribution approximations, one challenge is to

handle the non-linearity inherent within activation functions.

ApDeepSense solves this problem by further approximating

the non-linear activation functions with piece-wise linear

functions. Accordingly, we can compute approximate output

distributions and quantify uncertainty without any additional

training steps (if the neural networks have been already trained

with the dropout method).

We evaluate ApDeepSense on the Intel Edison plat-

form [23]. We conduct four different IoT tasks focusing

on health and well-being, smart city transportation, envi-

ronment monitoring, and activity recognition. We compare

ApDeepSense with the state-of-the-art test-time deep learning

output uncertainty estimation algorithm: MCDrop [21]. Model

performance, such as accuracy and output log-likelihood, as

well as system performance, such as inference time and energy

consumption, are all estimated on the Intel Edison platform.

Experimental results show that, compared with the unbiased

estimator, MCDrop, ApDeepSense can reduce around 88.9%
of execution time and around 90.0% of energy consumption

on average while offering better uncertainty estimates.

The rest of paper is organized as follows. Section II in-

troduces preliminary knowledge about dropout training and

its relationship with bayesian approximation. We describe

the technical details of ApDeepSense in Section III. The

evaluation part is presented in Section IV. Related work is

introduced in Section V. Finally, we conclude the paper in

Section VI.

II. PRELIMINARIES

We begin by introducing the basics of dropout training [24]

and the equivalence between neural networks with dropout

training and deep Gaussian processes [21].

For the rest of this paper, all vectors are denoted by bold

lower-case letters (e.g., x and y), and matrices and tensors are

represented by bold upper-case letters (e.g., X and Y). For a

column vector x, the jth element is denoted by x[j]. For a

tensor X, the tth matrix along the third axis is denoted by

X··t, and the other slicing notations are defined similarly. The

superscript l in x(l) and X(l) denote the vector and tensor

for the lth layer of the neural network. We use calligraphic

letters to denote sets (e.g., X and Y), where |X | denotes the

cardinality of X .

A. Dropout training

For a fully-connected neural network, the layer-wise oper-

ations can be formulated as:

y(l) = x(l)W(l
) + b(l),

x(l+1) = f (l)
(
y(l

)
)
,

(1)

where the notation l = 1, · · · , L denotes the index of the layer.

For the lth layer, the weight matrix is denoted as
W(l) ∈

R
d(l−1)×d(l)

; the bias vector is denoted as
b(l) ∈ R

d(l)

; the
input vector is denoted as x(l) ∈

R
d(l−1)

; and d(l) denotes
the dimension of the lth layer. In addition,

f (l)(·) denotes the
nonlinear activation function of the

lth layer.
In order to prevent feature co-adapting and model overfitting

problems, Srivastava et al. proposed a regularization method

called dropout [24], which drops out hidden and visible units

in neural networks. It is mathematically equivalent to zeroing

the rows of weight matrix W(l). Therefore, we can represent

the fully-connected neural networks with dropout operations

as:

z
(l)
[i] ∼ Bernoulli

(p
(l)
[i] ),

W̃(l) = diag
(
z(l))W(l),

y(l) = x(l)W̃(l
) + b(l),

x(l+1) = f (l)
(
y(l

)
)
.

(2)

As shown in (2), a vector of Bernoulli random variables

z(l) ∈ {0, 1}d(l−1)

forms a diagonal matrix which acts as a

mask to dropout the ith row of W̃(l) with probability p
(l)
[i] .

Note that, the above is a stochastic representation. In other

words, the neural network no longer has a deterministic

structure, since its structure is described in part by random

variables (namely, the Bernoulli variables mentioned above).

When using such a neural network to generate an output,

the expected value of the output for a given input has to

be computed over the distributions of the Bernoulli variables.

The variance of the output is a measure of neural network

output uncertainty. The challenge we address in this paper is to

estimate this uncertainty given the distribution of the Bernoulli

variables for the dropout probabilities.

B. Dropout as a Bayesian approximation

Bayesian models are a powerful tool to model output

uncertainty [25]. However, training a Bayesian neural network

is a computationally intensive task [26]. Gal et al. proved
the equivalence between dropout training and approximate

inference in a deep Gaussian process [21]. In this subsection,

we provide the necessary background for treating dropout as

a Bayesian approximation.

For the Bayesian approach, we are interested in learning the

posterior distribution over weight matrices
p(W|X,Y) given

training data X and labels Y, whereW = {W(l)}. Then, the
posterior can be applied to calculate the output distribution

y
of a testing data x through

p(y|x) =
∫

p(y|x,W)p
(W|X,Y)dW.
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However, computing the exact posterior distribution is not

tractable in a Bayesian neural network. Instead, we can use

the variational inference to approximate the posterior distri-

bution [27]. Variational inference finds the best approximate

posterior distribution q(W) within a family of simplified dis-

tributions. Gal et al. proved that, if we select the approximate

posterior distribution to be:

z
(l)
[i] ∼ Bernoulli(p

(l)
[i] ),

q
(
W(l)

)
= diag

(
z(l)

)
W(l).

(3)

then there is an equivalence between the deep Gaussian

process and the fully-connected neural network with dropout

operations trained with mean square error or a cross-entropy

loss function. Since the approximate posterior distribution

q(W) chosen in (3) is similar to the dropout operation shown

in (2), it has been shown that their training objective functions

are equivalent [21].

Thus, during the inference, we can estimate the output mean

and variance using samples generated with random dropout

masks z
(l)
[i] ∼ Bernoulli(p

(l)
[i] ). In order to obtain an accurate

output mean and variance estimate, more samples are required,

which also means running the whole neural network more

times.

This approach is not practical for mobile computing applica-

tions, although it is mathematically grounded. In the following

section, we will introduce ApDeepSense that replaces the

computationally intensive sampling process with a resource-

friendly distribution approximation method.

III. APDEEPSENSE MODEL

We introduce the technical details of ApDeepSense. We

are interested in computing the output distribution that results

from the input data and the stochastic (trained) neural network

structure. The idea is to approximate the output distribution at

each neural network layer by extending matrix multiplication

and activation functions used within the later to apply to

probabilistic distribution inputs. Such extended operations will

now yield not only the expected value of each output of

the layer (as is commonly done in deep learning systems),

but also the entire probability distribution of that output. We

select the multivariate Gaussian distribution to approximate

the output distribution of each layer. Below, we first explain

the rationale, then derive a closed-form approximation of the

output distribution of each operation.

A. The choice of approximation distribution family

In this subsection, we will show evidence justifying the

choice of the multivariate Gaussian distribution as the layer-

wise distribution approximation family.

First, we observe that the theoretical proof of equivalence

between dropout and deep Gaussian processes starts from the

case of Gaussian processes and two-layer neural networks.

This case is then extended to deep Gaussian processes and

deep neural networks by feeding the output of one Gaussian

process to the covariance of the next [21]. Therefore, the

internal-layer representations of deep neural networks can be

(a) The output distribution of a
hidden unit in the 12th layer.

(b) The output distribution of a
hidden unit in the 18th layer.

Fig. 1: The output distributions of hidden units in a neural network.

represented by the internal representations of deep Gaussian

processes, which are multivariate Gaussian distributions.

Next, we empirically show the distribution of units in the

hidden layers with a toy experiment. We train a 20-layer

fully-connected neural network with dropout operation and

Rectified Linear Unit (ReLU) activation function (except for

the output layer) to learn the sum of 200 independent Gaussian

variables. We randomly pick one hidden unit from the second

and the third layer respectively. Then, we run the whole neural

network for 25, 000 times with random dropout masks and

record generated samples from these two hidden units. The

generated distributions are shown in Figure 1.

The output distributions of two hidden units in Figure 1

clearly exhibit the shapes of bell curves with different means

and variances. This toy example shows that the distributions of

internal hidden units of a neural network can be approximated

by the multivariate Gaussian distribution empirically.

In this section, we argued, both theoretically and empiri-

cally, for our choice of using the multivariate Gaussian dis-

tributions to approximate the output distributions of layers in

the neural network. In the following subsections, we will show

the technical details of approximating output distributions of

basic operations by the multivariate Gaussian distribution with

a diagonal covariance matrix.

B. Approximation criteria

The core contribution of ApDeepSense is to extend the

basic operations in the stochastic neural networks (generated

by dropout) to output not only an expected value but also a

probability distribution of the output random variable. Since

computing the exact output distribution is not tractable, ap-

proximation is needed. In ApDeepSense, we approximate the

output distribution with the multivariate Gaussian distribution

based on minimizing the Kullback-Leibler (KL) divergence

between the real and approximate distributions.

Since we discuss the multivariate Gaussian distribution with

a diagonal covariance matrix, without loss of generality, we

mainly focus on the analysis of the output distribution with a

single element in the rest of paper.

We begin by introducing Lemma 1 as follows.

Lemma 1. Assume that the exact output distribution is p(x)
and the approximate output distribution is q(x) ∼ N (μ, σ2).
Finding the best fitting q(x) according to KL divergence is
equivalent to moments matching between p(x) and q(x).
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Proof. The main objective function for the approximation is

min
q

KL(p(x)||q(x)),

=min
q

∫
p(x) log

(
p(x)

q(x)

)
dx

= min
μx,σ2

−
∫

p(x) logN (μ, σ2)dx

= min
μx,σ2

log(σ2)

2
+

∫
x
p(x)(x− μ)2

2σ2
.

In order to obtain the optimal q(x), we take derivative over

μ and σ2 and make them equal to 0. Then we can obtain the

solution

μ =

∫
p(x)xdx, (4)

σ2 =

∫
p(x)(x− μ)2dx. (5)

Therefore, according to (4) and (5), the approximation

process for each operation can be viewed as mean and variance

matching between the exact output distribution p(x) and the

approximating distribution q(x).

C. Approximating matrix multiplication with dropout

We start with the basic matrix multiplication operation with

dropout. The operation can be formulated as:

z[i] ∼ Bernoulli(p[i]),

x[i] ∼ N
(
μ[i],σ

2
[i]

)
,

W̃ = diag
(
z
)
W,

y = xW̃ + b.

(6)

As shown in (6), elements in the vector of Bernoulli vari-

ables z and the vector of Gaussian variables x are independent

random variables. According to Lemma 1, we need to calculate

the means and variances of the output distribution p(y).

First, we calculate the mean of output variables,

E[y[j]] =E

[∑
i

x[i]z[i]W[i,j]

]

=
∑
i

μ[i]p[i]W[i,j].
(7)

Then, we calculate the variance of output variables. Since

the output variable y[j] is the sum of independent variable

x[i]z[i]W[i,j], according to Bienaymé formula [28], the vari-

ance of the sum of independent random variables is the sum

of their variances,

Var[y[j]] =Var
[∑

i

x[i]z[i]W[i,j]

]

=
∑
i

Var
[
x[i]z[i]W[i,j]

]

=
∑
i

E
[
(x[i]z[i]W[i,j])

2
]− E

[
x[i]z[i]W[i,j]

]2

=
∑
i

E
[
x[i]

2
]
E
[
z[i]

2
]
W[i,j]

2 − μ[i]
2p[i]

2W[i,j]
2

=
∑
i

(
μ[i]

2 + σ[i]
2
)
p[i]W[i,j]

2 − μ[i]
2p[i]

2W[i,j]
2.

(8)

However, (7) and (8) are not represented in matrix forms

that can be efficiently computed with standard deep learning

libraries such as TensorFlow, MXNet, and Theano. If we

denote element-wise multiplication as notation � and denote

X2 def
= X � X, we can represent the matrix form of (7) and

(8) as:

E[y] = (μ� p)W, (9)

Var[y] =
(
(μ2 + σ2)� p− μ2 � p2

)
W2. (10)

Therefore, we can efficiently compute the output distribution

of matrix multiplication with dropout, p(y) ∼ N (E[y],Var[y])
through (9) and (10).

D. Approximating activation functions
Next, we describe how to compute the output distribution of

activation functions. All commonly used activation functions

are element-wise operations. Hence, without loss of generality,

we focus on the operation applied on each input random

variable. We assume that the activation function with random

variable is formulated as:

x[i] ∼ N
(
μ[i],σ

2
[i]

)
,

y[i] = f(x[i]),
(11)

where f(·) is the element-wise activation function.
According to (11), an activation function on random vari-

ables can be regarded as the composition of input random

variable x[i] with function f(·). However, the challenge is

that computing the mean and variance of composed random

variables with an arbitrary non-linear function is usually not

amenable to a closed-form solution. ApDeepSense tackles this

challenge by further approximating non-linear functions with

piece-wise linear functions. Since the linear transformation

of Gaussian random variables is well-understood, we can

calculate the mean and variance of an output Gaussian random

variable with a piece-wise linear transformation.
We assume that the whole axis (−∞,+∞) is divided into

P parts, namely (ap, bp) for p = 1, · · · , P , where bp = ap+1,

a1 = −∞, and bP = +∞. The pre-defined piece-wise linear

activation function f̄(·) is a linear function yp = kp ·x+cp on

each interval (ap, bp). One example of approximating sigmoid

function with piece-wise linear function can be found in [29].

The input random variable follows a Gaussian distribution:

x ∼ N (μ, σ2).
Then, we calculate the mean and variance of the output

distribution y = f̄(x) respectively.

μy = E[y] =

P∑
p=1

Ep[y] (12)

=
P∑

p=1

∫ bp

ap

(kpx+ cp) · N (μ, σ2)dx. (13)
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σy
2 = E[(y − μy)

2] =
P∑

p=1

Ep[(y − μy)
2] (14)

=
P∑

p=1

∫ bp

ap

(kpx+ cp − μy)
2 · N (μ, σ2)dx. (15)

We calculate the mean and variance by considering the case

where kp �= 0 and kp = 0.

1) When kp �= 0: Within the interval (ap, bp), y = f̄(x) fol-

lows a Gaussian distribution N (μp, σp
2), where μp = kpμ+cp

and σp = |kp|σ. Then Ep[y] (13) can be reformulated as:

Ep[y] =

∫ b̄p

āp

y · N (μp, σp
2)dy,

where āp = kpap + cp and b̄p = kpbp + cp.

We assume that

Mp =

∫ b̄p

āp

(y − μp) · N (μp, σp
2)dy, (16)

Dp =

∫ b

a

N (μ, σ2)dx. (17)

Then we can obtain the representation of Ep[y] as:

Ep[y] = μp ·Dp +Mp. (18)

Similarly, Ep[(y − μy)
2] (15) can be reformulated as:

Ep[(y − μy)
2] =

∫ b̄p

āp

(y − μy)
2 · N (μp, σp

2)dy.

We further assume that

Vp =

∫ b̄p

āp

(y − μp)
2 · N (μp, σp

2)dy. (19)

Then we can obtain the representation of Ep[(y−μy)
2] as:

Ep[(y−μy)
2] = Vp+2(μp−μy) ·Mp+(μp−μy)

2 ·Dp. (20)

2) When kp = 0: In this case, f̄(·) is a constant function,

which usually exists when p = 1 or p = P . Then we can

easily obtain that

Ep[y] = cp ·Dp, (21)

Ep[(y − μy)
2] = (cp − μy)

2 ·Dp. (22)

3) Summary: Once we can calculate Mp, Dp, Vp, we

can then obtain the approximate output distribution y ∼
N (μy, σy

2) generated by mean (12) and variance (14) with

corresponding P components in (18), (20), (21), and (22).

Clearly, (16), (17), and (19) can be calculated efficiently in

closed form with basic math operations and the error function

erf(·), which all have corresponding APIs in standard deep

learning libraries such as TensorFlow and Theano.

Dp =
1

2
·
(

erf
(bp − μ

σ
√
2

)
− erf

(ap − μ

σ
√
2

))
, (23)

Mp =

√
σp

2

2π
·
(
exp

(
− (āp − μp)

2

2σp
2

)

− exp
(
− (b̄p − μp)

2

2σp
2

))
, (24)

Vp =

√
σp

2

2π
·
(
(āp − μp) exp

(
− (āp − μp)

2

2σp
2

)

−(b̄p − μp) exp
(
− (b̄p − μp)

2

2σp
2

))

+
σp

2

2
·
(

erf
( b̄p − μp

σp

√
2

)
− erf

( āp − μp

σp

√
2

))
.(25)

Then, Ep[y] and Ep[(y−μy)
2] can be calculated with (23),

(24), and (25). Therefore, the final output distribution of the

activation function f(·) is

y ∼ N (μy, σy
2),

μy =
P∑

p=1

Ep[y],

σy
2 =

P∑
p=1

Ep[(y − μy)
2].

(26)

Above, we have described the main technical details of

ApDeepSense. The basic operations within a fully-connected

neural network, such as matrix multiplication with dropout and

activation function, now support taking probabilistic distribu-

tions as inputs and generate distributions as outputs. Hence,

the distribution of the final output can be computed. Narrower

distributions offer less uncertainty, whereas flatter distributions

offer more uncertainty.

IV. EVALUATION

In this section, we evaluate the quality of the computed

output probability distributions by the new neural network

models. Specifically we consider the mean absolute error and

predictive log-likelihood. The former is a metric of accuracy

of the output distribution mean. The latter (predictive log

likelihood) measures the correspondence between ground truth

values and their predicted distribution. Lower numbers mean

higher correspondence. We then evaluate system performance,

such as running time and energy consumption on the Intel

Edison platform. In the following subsections, first, we in-

troduce the evaluation tasks, corresponding datasets, baseline

algorithms, and testing neural network details. Next, we eval-

uate the model performance including mean absolute error or

accuracy and negative log-likelihood for all algorithms. At last,

we show the system performance including inference time and

energy consumption on the Intel Edison platform.

A. Testing hardware

Our hardware is based on the Intel Edison computing

platform [23]. The Intel Edison computing platform is powered

by the Intel Atom SoC dual-core CPU at 500 MHz and

is equipped with 1GB memory and 4GB flash storage. For

fairness, all neural network models are run solely on CPU

during experiments.
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B. Evaluation tasks and datasets

We evaluate ApDeepSense on four different IoT tasks.

Here, we introduce the details of these four tasks and their

corresponding datasets.

• BPEst: Cuffless blood pressure monitoring through pho-
toplethysmogram. The first task monitors cuffless blood

pressure through a photoplethysmogram from a fingertip.

The photoplethysmogram from fingertip (PPG) and arterial

blood pressure (ABP) signal (mmHg) is extracted for the

non-invasive cuffless blood pressure monitoring task.2 The

target of BPEst task is to infer the waveform of ABP

based on the waveform of PPG collected from fingertips,

estimating a 2-second ABP waveform (250 samples) based

on the corresponding 2-second PPG waveform.

• NYCommute: Commute time estimation of New York City.
This second task estimates commute time in New York

City through the pick-up time and location as well as the

drop-off location, which is an important component in smart

transportation. We use (parts of) the yellow and green taxi

trip records within January 2016 as the training, validation,

and testing datasets.3 The input of the learning model

is a vector with 5 elements, containing the standardized

longitude and latitude of the pick-up and drop-off location

as well as the pick-up time within a day. The output of the

learning model is the commute time.

• GasSen: Estimate dynamic gas mixtures from chemical sen-
sors. The third task estimates real concentration of Ethylene

and CO gas mixture from an array of 16 low-end chemical

sensors. 4 Gas concentrations range from 0 − 600 parts-

per-million (ppm). The learning model is trained and tested

to predict the concentration Ethylene and CO gas mixtures

through the vector of 16 sensor inputs.

• HHAR: Heterogeneous human activity recognition. The pre-

vious three tasks are all regression tasks, but this one is a

classification task. Heterogeneous means that we are testing

on a new user who has not appeared in the training set.

This dataset contains readings from two motion sensors

(accelerometer and gyroscope). The dataset contains 9 users,

6 activities (biking, sitting, standing, walking, climbStair-up,

and climbStair-down), and 6 types of mobile devices 5.

C. Testing models and uncertainty estimation algorithms

For each experiment, we use two pre-trained neural net-

works with the same structure but different activation func-

tions.

• DNN-ReLU: A 5-layer fully-connected neural network with

512 hidden dimension and ReLU activation function. Since

ReLU is already a piece-wise linear function, no activation

function approximation is needed.

2https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+
Estimation

3http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
4https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+

gas+mixtures
5https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+

Recognition

• DNN-Tanh: A 5-layer fully-connected neural network

with 512 hidden dimension and Tanh activation function.

ApDeepSense uses a piece-wise linear function with 7

pieces to approximate Tanh in all experiments.

During all experiments, we compare two output uncertainty

estimation algorithms.

• ApDeepSense: The algorithm we propose in this paper.

• MCDrop-k: A sampling-based unbiased uncertainty estima-

tion method for deep neural network with dropout. This

algorithm generates k output samples with random dropout

masks, and then estimates predictive uncertainties based on

these k output samples [21]. During all experiments, we

choose k = [3, 4, 10, 30, 50].
• RDeepSense: An efficient uncertainty estimation method

for deep neural network that requires retraining [22]. We

introduce this method to illustrate the upper bound of model

estimation performance can be achieved with retraining.

D. Model estimation performance

In this subsection, model estimation performance is dis-

cussed for four tasks. For each task, two measures are used

to show the bias-variance tradeoff among different output

uncertainty estimation algorithms. For regression tasks, mean

absolute error (MAE) and negative log-likelihood (NLL)

are measured. For classification tasks, accuracy (ACC) and

negative log-likelihood (NLL) are measured. Negative log

likelihood depends on the output uncertainty. It is a popular

metric for evaluating output uncertainty [30].
1) BPEst: We compare all the algorithms for two pre-

trained neural networks based on mean absolute error (MAE)

and negative log-likelihood (NLL), which is illustrated in

Table I.

TABLE I: Mean Absolute Error (MAE) and Negative
Log-Likelihood (NLL) for the BPEst task.

MAE NLL

DNN-ReLU-ApDeepSense 13.41 4.56
DNN-ReLU-MCDrop-3 13.91 57.72
DNN-ReLU-MCDrop-5 13.68 7.89

DNN-ReLU-MCDrop-10 13.50 5.74
DNN-ReLU-MCDrop-30 13.38 5.14
DNN-ReLU-MCDrop-50 13.35 5.06
DNN-ReLU-RDeepSense 14.18 3.46

DNN-Tanh-ApDeepSense 19.38 5.39
DNN-Tanh-MCDrop-3 19.61 520.30
DNN-Tanh-MCDrop-5 19.51 56.74
DNN-Tanh-MCDrop-10 19.39 32.68
DNN-Tanh-MCDrop-30 19.32 25.19
DNN-Tanh-MCDrop-50 19.30 23.99
DNN-Tanh-RDeepSense 19.38 4.53

For both pre-trained neural networks, DNN-ReLU and

DNN-Tanh, ApDeepSense is consistently the best predic-

tive uncertainty estimator with the smallest NLL. The result

shows that approximation method used in ApDeepSense works

well in the real dataset. The experiments with DNN-Tanh

demonstrate the effectiveness of approximating non-linear

activation functions with piece-wise linear functions. Notice
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that ApDeepSense is not the best-performing algorithm with

respect to MAE. ApDeepSense achieves a better bias-variance

tradeoff by directly approximating the output distribution.

2) NYCommute: We compare all the algorithms for two

pre-trained neural networks based on mean absolute error

(MAE) and negative log-likelihood (NLL), which is illustrated

in Table II.

TABLE II: Mean Absolute Error (MAE) and Negative
Log-Likelihood (NLL) for the NYCommute task.

MAE NLL

DNN-ReLU-ApDeepSense 5.44 135.19
DNN-ReLU-MCDrop-3 5.54 6569.04
DNN-ReLU-MCDrop-5 5.50 1898.79

DNN-ReLU-MCDrop-10 5.47 1140.90
DNN-ReLU-MCDrop-30 5.45 889.60
DNN-ReLU-MCDrop-50 5.44 838.94
DNN-ReLU-RDeepSense 5.64 7.7

DNN-Tanh-ApDeepSense 6.41 123.75
DNN-Tanh-MCDrop-3 6.59 7517.95
DNN-Tanh-MCDrop-5 6.54 892.34
DNN-Tanh-MCDrop-10 6.51 443.04
DNN-Tanh-MCDrop-30 6.48 332.42
DNN-Tanh-MCDrop-50 6.47 321.73
DNN-Tanh-RDeepSense 6.59 14.11

ApDeepSense is consistently the best-performing algorithm

for both the MAE and NLL measures. The sampling-based

algorithm MCDrop shows inferior performance even with 50

samples, i.e., running the whole neural network for 50 times.

The result implies that even more samples are required for

MCDrop to compete with ApDeepSense.

3) GasSen: We still compare all the algorithms for two

pre-trained neural networks based on mean absolute error

(MAE) and negative log-likelihood (NLL), which is illustrated

in Table III.

TABLE III: Mean Absolute Error (MAE) and Negative
Log-Likelihood (NLL) for the GasSen task.

MAE NLL

DNN-ReLU-ApDeepSense 19.42 40.21
DNN-ReLU-MCDrop-3 21.17 456.59
DNN-ReLU-MCDrop-5 20.36 342.13

DNN-ReLU-MCDrop-10 19.66 333.52
DNN-ReLU-MCDrop-30 19.27 303.66
DNN-ReLU-MCDrop-50 19.15 290.51
DNN-ReLU-RDeepSense 15.25 3.77

DNN-Tanh-ApDeepSense 39.20 6.32
DNN-Tanh-MCDrop-3 35.74 103.73
DNN-Tanh-MCDrop-5 32.76 41.67

DNN-Tanh-MCDrop-10 32.30 25.13
DNN-Tanh-MCDrop-30 31.71 19.74
DNN-Tanh-MCDrop-50 31.57 18.81
DNN-Tanh-RDeepSense 19.36 4.23

ApDeepSense still outperforms all the algorithms for

uncertainty estimation with NLL metric. In this dataset,

ApDeepSense still achieves a bias-variance tradeoff with better

NLL. Specially in the DNN-Tanh network, we can clearly see

that ApDeepSense sets the uncertainty estimation as its first

TABLE IV: Accuracy (ACC) and Negative Log-Likelihood (NLL)
for the HHAR task.

ACC NLL

DNN-ReLU-ApDeepSense 79.12% 1.02
DNN-ReLU-MCDrop-3 73.79% 1.479
DNN-ReLU-MCDrop-5 75.34% 1.476

DNN-ReLU-MCDrop-10 76.38% 1.475
DNN-ReLU-MCDrop-30 76.24% 1.475
DNN-ReLU-MCDrop-50 76.72% 1.476
DNN-ReLU-RDeepSense 83.98% 0.16

DNN-Tanh-ApDeepSense 73.57% 0.23
DNN-Tanh-MCDrop-3 70.43% 1.45
DNN-Tanh-MCDrop-5 71.07% 1.38
DNN-Tanh-MCDrop-10 71.68% 1.33
DNN-Tanh-MCDrop-30 72.81% 1.31
DNN-Tanh-MCDrop-50 73.29% 1.29
DNN-Tanh-RDeepSense 86.78% 0.21

priority. As we mentioned in the experiment on BPEst task, it

is due to the nature of distribution approximation within the

ApDeepSense.

4) HHAR: Since HHAR is a classification task, we compare

all the algorithms for two pre-trained neural networks based

on accuracy in percentage (ACC) and negative log-likelihood

(NLL), which is illustrated in Table IV.

ApDeepSense outperforms the other algorithms according

to ACC and NLL metrics. ApDeepSense achieves both better

classification results and likelihood estimation at the same

time.

E. System performance

In this subsection, we compare the system performances

for all uncertainty estimation algorithms, including inference

times, energy consumption, and model and system perfor-

mance tradeoff. All the experiments are conducted on Intel

Edison platform with the CPU unit. All the experiments

are conducted for 5000 times and the mean values of such

experimental results are reported.

First, we illustrate the inference time and energy consump-

tion of all algorithms for all BPEst, NYCommute, GasSen, and

HHAR tasks in Figures 2, 3, 4, and 5 respectively. We can see

that ApDeepSense saves around 94.1% and 83.6% inference

time in average for DNN with ReLU and Tanh activation

function respectively. At the same time, ApDeepSense saves

around 94.2% and 85.7% energy consumption in average for

DNN with ReLU and Tanh activation function respectively.

Here is the main reason for this improvement. MCDrop-50

runs the original neural network for 50 times. ApDeepSense

uses a piece-wise linear function with 2 pieces to approximate

ReLU function and a piece-wise linear function with 7 pieces

to approximate Tanh function. Therefore, ApDeepSense theo-

retically can save around 1−2/50 = 96% and 1−7/50 = 86%
computations for DNN-ReLU and DNN-Tanh respectively,

which agrees with our empirical results.

Then we analyze the relationship between the energy con-

sumption and quality of uncertainty estimation for all algo-
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(b) The energy consumption of the BPEst task.

Fig. 2: The inference time and energy consumption of the BPEst
task.
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(b) The energy consumption of the NYCommute task.

Fig. 3: The inference time and energy consumption of the
NYCommute task.

rithms. In this experiment, we use the negative log-likelihood

(NLL) to represent the quality of uncertainty estimation.

Smaller NLL means better uncertainty estimation quality. The

experimental results are illustrated in Fig. 6, 7, 8, and 9.

The points in the left-bottom corner of these graphs rep-

resent better tradeoffs between energy consumption and un-

certainty estimation (i.e., , consuming less energy to achieve

a predictive distribution with lower negative log-likelihood).

Therefore, these tradeoffs shows that ApDeepSense is a more

effective and efficient uncertainty estimation algorithm for

deep neural networks.

V. RELATED WORK

Reliability and uncertainty estimation is an important topic

in the area of Internet of Things. Zhou et al. [31] modelled

ego-motion uncertainty on IoT platform. Van et al. [32]
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(b) The energy consumption of the GasSen task.

Fig. 4: The inference time and energy consumption of the GasSen
task.
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(b) The energy consumption of the HHAR task.

Fig. 5: The inference time and energy consumption of the HHAR
task.

applied sensing uncertainty on mobile robots controlling with

collision avoidance. Wang et al. [33] used uncertainty esti-

mation to design the optimal sensor sampling policy. Jin et
al. [34] proposed a holistic framework that optimizes both

reliability and temporality for multiple coexisting networks.

Recently, deep learning models were considered in IoT-

related systems. Lane et al. [16] applied deep learning to

solve audio sensing tasks. Yao et al. [17] proposed a uni-

fied deep learning model that fuses multiple sensor inputs

and extracts time dependencies from sensing data. Yao et
al. [35] proposed a structure compression algorithm for neural

networks, improving the system efficiency on low-end IoT

devices. However, less attention has been paid to estimating

deep learning uncertainty in an IoT system. Recent studies

provide a theoretically justified output uncertainty estima-

tion method for neural networks [21]. However, it relies on
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(b) The tradeoff for DNN-Tanh of the BPEst task.

Fig. 6: The tradeoff between energy consumption and NLL of the
BPEst task.
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(b) The tradeoff for DNN-Tanh of the NYCommute task.

Fig. 7: The tradeoff between energy consumption and NLL of the
NYCommute task.

0 100 200 300 400 500
0

200

400

600

E
ne

rg
y 

(m
J)

 

 

(a) The tradeoff for DNN-ReLU of the GasSen task..

0 20 40 60 80 100 120
0

200

400

600

E
ne

rg
y 

(m
J)

 

 

(b) The tradeoff for DNN-Tanh of the GasSen task.

Fig. 8: The tradeoff between energy consumption and NLL of the
GasSen task.

computationally intensive operations that are not practical

for mobile computing applications. Recent work propose an
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(b) The tradeoff for DNN-Tanh of the HHAR task.

Fig. 9: The tradeoff between energy consumption and NLL of the
HHAR task.

energy-efficient uncertainty estimation algorithm for neural

networks [22]. However, users have to retrain the whole neural

network according to the proposed design specifications.

To the best of our knowledge, ApDeepSense is the first

energy-efficient test-time uncertainty estimation algorithm for

trained deep neural networks deployed on IoT devices.

VI. CONCLUSION

We described ApDeepSense, an effective and efficient

uncertainty estimation algorithm for fully-connected neural

networks. ApDeepSense solves the problem of providing

uncertainty estimations for neural networks without further

structure-changing or re-training by adopting a novel layer-

wise distribution approximation method. In addition, piece-

wise linear functions are used to approximate nonlinear acti-

vation functions for deriving an efficient closed-form solution.

Experiments on the Intel Edison platform with four mobile

computing tasks show that ApDeepSense saves around 90%
inference time and energy consumption to provide uncertainty

estimations with smaller negative log-likelihood measures

compared with the state-of-the-art baseline algorithm.

The paper leaves exciting oppoertunities for future work.

For example, currently, ApDeepSense can only support fully-

connected neural networks. It is possible to extend the so-

lution proposed in Section III to convolutional and recurrent

neural networks by replacing the original dropout operation

with convolutional dropout [36] and recurrent dropout [37].

These two dropout operations can convert convolutional neural

networks and recurrent neural networks into Bayesian neural

networks. However, challenges still exist in extending related

operations, such as convolution, to apply to probabilistic

distribution inputs and offer closed-form output distribution

using APIs in standard deep learning libraries. Such extensions

and approximations are a topic of future work of the authors.

VII. ACKNOWLEDGEMENTS

We sincerely thank Yuan He for shepherding the final

version of this paper, and the anonymous reviewers for their

342



invaluable comments. Research reported in this paper was

sponsored in part by NSF under grants CNS 16-18627 and

CNS 13-20209 and in part by the Army Research Labora-

tory under Cooperative Agreements W911NF-09-2-0053 and

W911NF-17-2-0196. The views and conclusions contained

in this document are those of the authors and should not

be interpreted as representing the official policies, either

expressed or implied, of the Army Research Laboratory, NSF,

or the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation here on.

REFERENCES

[1] J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh,
“Wireless sensor networks for healthcare,” Proceedings of the IEEE,
vol. 98, no. 11, pp. 1947–1960, 2010.

[2] C. A. Boano, M. Lasagni, and K. Römer, “Non-invasive measurement
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