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Abstract—Recent advances in deep-learning-based applications
have attracted a growing attention from the IoT community.
These highly capable learning models have shown significant
improvements in expected accuracy of various sensory inference
tasks. One important and yet overlooked direction remains to
provide uncertainty estimates in deep learning outputs. Since
robustness and reliability of sensory inference results are critical
to IoT systems, uncertainty estimates are indispensable for IoT
applications. To address this challenge, we develop ApDeepSense,
an effective and efficient deep learning uncertainty estimation
method for resource-constrained IoT devices. ApDeepSense lever-
ages an implicit Bayesian approximation that links neural net-
works to deep Gaussian processes, allowing output uncertainty to
be quantified. Our approach is shown to significantly reduce the
execution time and energy consumption of uncertainty estimation
thanks to a novel layer-wise approximation that replaces the
traditional computationally intensive sampling-based uncertainty
estimation methods. ApDeepSense is designed for neural net-
works trained using dropout; one of the most widely used
regularization methods in deep learning. No additional training
is needed for uncertainty estimation purposes. We evaluate
ApDeepSense using four IoT applications on Intel Edison devices.
Results show that ApDeepSense can reduce around 88.9% of
the execution time and 90.0% of the energy consumption, while
producing more accurate uncertainty estimates compared with
state-of-the-art methods.

Index Terms—Deep learning; Internet of Things; Uncertainty
estimation; Mobile computing;

I. INTRODUCTION

Sensory measurements on loT devices have been widely
explored for diverse physical context inference and decision-
making tasks. A broad variety of applications have been
proposed in the areas of health and well-being [1]—[3], tracking
and localization [4]-[7], physical state monitoring [8]-[11],
and crowd sensing [12]-[14]. An important part of these suc-
cessful applications is usually a learning model that predicts
target quantities or states based on sensory inputs.

With recent breakthroughs in deep learning, attempts to
apply deep neural networks as learning models within IoT
systems have shown impressive results in a large number of
applications [15], including audio sensing [16], tracking and
localization [17], human activity recognition [17], [18], psy-
chological state prediction [19], and user identification [17].
Compared with traditional machine learning models, these
highly capable deep neural networks are better at making
sophisticated mapping between input sensory measurements
and the predicted quantities or states of interest.
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Despite the fact that deep learning research has made such
significant improvements in various estimation, classification,
and prediction tasks [16], [17], concerns remain that hinder
practical deployment of deep neural networks in the context
of IoT applications. One important concern is the absence
of efficient and accurate solutions for quality assessment of
deep learning outputs. Such assessments are indispensable for
applications that interact with the physical world, where errors
may have adverse economic, mission, or safety consequences.
In a deep neural network, the stacked non-linear structures
cause tremendous difficulties analyzing and interpreting their
behaviors [20]. Therefore, practitioners either mistrust neural
networks altogether or blindly trust them without a principled
understanding of the underlying uncertainties.

In this paper, we address the aforementioned problem by
developing an approach for estimating uncertainty in neural
network outputs (i.e., output uncertainty).

Estimating output uncertainty of neural networks running
on IoT devices is a challenging task. In principle, one can
empirically estimate uncertainty through extensive testing.
However, this would take a lot of energy and overhead. II-
luminating studies from the machine learning community [21]
recently provided exciting theoretical foundations for output
uncertainty estimation by proving an equivalence between
deep neural networks (with dropout regularization) and varia-
tional Gaussian processes. Yet, their proposed solution is not
resource-friendly, because it is a sampling-based solution. In
order to generate enough output samples for estimating output
mean and variance, the solution has to run a stochastic neural
network multiple times [21]. As such, it is unsuitable for
low-end IoT devices. A recent study proposes an uncertainty-
aware deep learning model for IoT applications that aims
to reduce energy and time consumption [22]. The proposed
solution, however, requires re-training the neural network to
generate output uncertainty estimates, which is inefficient for
IoT applications with pre-trained neural networks'.

To this end, we propose ApDeepSense that enables pre-
trained deep neural networks with dropout regularization to
generate output uncertainty estimates in a computationally
efficient manner without any re-training. To the best of our
knowledge, this is the first paper that directly enables existing

Uhttps://github.com/tensorflow/models/tree/master/research/slim#Pretrained
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dropout trained neural networks to efficiently generate output
uncertainty estimates on resource-limited devices.

The basic idea of ApDeepSense is to replace the resource-
hungry sampling approach with efficient layerwise distribu-
tion approximations amenable to closed-form representations.
ApDeepSense extends the original operations performed on
signals inside a neural network, such as matrix multiplication
and activation functions, to apply to inputs described by prob-
abilistic distributions. A closed-form Gaussian approximation
is then optimally fitted to best approximate the true output
distribution of each operation by minimizing the Kullback-
Leibler (KL) divergence. In order to find closed-form so-
lutions for distribution approximations, one challenge is to
handle the non-linearity inherent within activation functions.
ApDeepSense solves this problem by further approximating
the non-linear activation functions with piece-wise linear
functions. Accordingly, we can compute approximate output
distributions and quantify uncertainty without any additional
training steps (if the neural networks have been already trained
with the dropout method).

We evaluate ApDeepSense on the Intel Edison plat-
form [23]. We conduct four different IoT tasks focusing
on health and well-being, smart city transportation, envi-
ronment monitoring, and activity recognition. We compare
ApDeepSense with the state-of-the-art test-time deep learning
output uncertainty estimation algorithm: MCDrop [21]. Model
performance, such as accuracy and output log-likelihood, as
well as system performance, such as inference time and energy
consumption, are all estimated on the Intel Edison platform.
Experimental results show that, compared with the unbiased
estimator, MCDrop, ApDeepSense can reduce around 88.9%
of execution time and around 90.0% of energy consumption
on average while offering better uncertainty estimates.

The rest of paper is organized as follows. Section II in-
troduces preliminary knowledge about dropout training and
its relationship with bayesian approximation. We describe
the technical details of ApDeepSense in Section III. The
evaluation part is presented in Section IV. Related work is
introduced in Section V. Finally, we conclude the paper in
Section VI.

II. PRELIMINARIES

We begin by introducing the basics of dropout training [24]
and the equivalence between neural networks with dropout
training and deep Gaussian processes [21].

For the rest of this paper, all vectors are denoted by bold
lower-case letters (e.g., x and y), and matrices and tensors are
represented by bold upper-case letters (e.g., X and Y). For a
column vector x, the j*" element is denoted by x[;]- For a
tensor X, the t*® matrix along the third axis is denoted by
X..+, and the other slicing notations are defined similarly. The
superscript [ in x® and X® denote the vector and tensor
for the I*" layer of the neural network. We use calligraphic
letters to denote sets (e.g., X and ))), where |X'| denotes the
cardinality of X.
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A. Dropout training

For a fully-connected neural network, the layer-wise oper-
ations can be formulated as:

yO =xOWG
XD = §O (yq)’

’ ey
where the notation [ = 1, - - - , L denotes the index of the layer.
For(l El})e l:fl) layer, the weight matrix is denoted as WO ¢
R xd™ . the bias vector is denoted BSE0 ¢ A the
input vector is denoted as x() € a-1 0 ’

. . th .. 3 and d denotes
the dimension of the [*" layer. In addition, ,(;

. . . FW(-) denotes the
nonlinear activation function of the It |

In order to prevent feature co-adapting and model overfitting

problems, Srivastava et al. proposed a regularization method
called dropout [24], which drops out hidden and visible units
in neural networks. It is mathematically equivalent to zeroing
the rows of weight matrix W (). Therefore, we can represent
the fully-connected neural networks with dropout operations
as:

O]

~z[i] ~ Bernoull'tpg]))’
w® — diag(z(f WO
yO = xOW( b0, @

XD = §O (y<§)

As shown in (2), a vector of Bernoulli random variables
z) € {0,1}%""" forms a diagonal matrix which acts as a
mask to dropout the ith‘ row of V~V(l) with probability p(f).

Note that, the above is a stochastic representation’ In [Bther
words, the neural network no longer has a deterministic
structure, since its structure is described in part by random
variables (namely, the Bernoulli variables mentioned above).
When using such a neural network to generate an output,
the expected value of the output for a given input has to
be computed over the distributions of the Bernoulli variables.
The variance of the output is a measure of neural network
output uncertainty. The challenge we address in this paper is to
estimate this uncertainty given the distribution of the Bernoulli
variables for the dropout probabilities.

B. Dropout as a Bayesian approximation

Bayesian models are a powerful tool to model output
uncertainty [25]. However, training a Bayesian neural network
is a computatlonally intensive task [2§]. Gal(f t al. proved
the equivalence between dropout training and approximate
inference in a deep Gaussian process [21]. In this subsection,
we provide the necessary background for treating dropout as
a Bayesian approximation.

For the Bayesian approach, we are interested in learning the
p0§t§r10r distribution over weight matrlcesp(W|X7 Y) given
training data X and labels Y, where — WO Then. the
posterior can be applied to calculate)ﬁie oétput istribution

. y
of a testing data x through

p(ylx) = / POFEVIRWIX, Y)W



However, computing the exact posterior distribution is not
tractable in a Bayesian neural network. Instead, we can use
the variational inference to approximate the posterior distri-
bution [27]. Variational inference finds the best approximate
posterior distribution ¢(/) within a family of simplified dis-
tributions. Gal et al. proved that, if we select the approximate
posterior distribution to be:

il i)
¢(WO) = diag(z®) WO,

then there is an equivalence between the deep Gaussian
process and the fully-connected neural network with dropout
operations trained with mean square error or a cross-entropy
loss function. Since the approximate posterior distribution
g(W) chosen in (3) is similar to the dropout operation shown
in (2), it has been shown that their training objective functions
are equivalent [21].

Thus, during the inference, we can estimate the output mean
and variance using samples generated with random dropout
masks z[(f]) ~ Bernoulli(p[(l.l])). In order to obtain an accurate
output mean and variance estimate, more samples are required,
which also means running the whole neural network more
times.

This approach is not practical for mobile computing applica-
tions, although it is mathematically grounded. In the following
section, we will introduce ApDeepSense that replaces the
computationally intensive sampling process with a resource-
friendly distribution approximation method.

z;.; ~ Bernoulli(p

3

III. APDEEPSENSE MODEL

We introduce the technical details of ApDeepSense. We
are interested in computing the output distribution that results
from the input data and the stochastic (trained) neural network
structure. The idea is to approximate the output distribution at
each neural network layer by extending matrix multiplication
and activation functions used within the later to apply to
probabilistic distribution inputs. Such extended operations will
now yield not only the expected value of each output of
the layer (as is commonly done in deep learning systems),
but also the entire probability distribution of that output. We
select the multivariate Gaussian distribution to approximate
the output distribution of each layer. Below, we first explain
the rationale, then derive a closed-form approximation of the
output distribution of each operation.

A. The choice of approximation distribution family

In this subsection, we will show evidence justifying the
choice of the multivariate Gaussian distribution as the layer-
wise distribution approximation family.

First, we observe that the theoretical proof of equivalence
between dropout and deep Gaussian processes starts from the
case of Gaussian processes and two-layer neural networks.
This case is then extended to deep Gaussian processes and
deep neural networks by feeding the output of one Gaussian
process to the covariance of the next [21]. Therefore, the
internal-layer representations of deep neural networks can be
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(a) The output distribution of a
hidden unit in the 12th layer.

(b) The output distribution of a
hidden unit in the 18th layer.

Fig. 1: The output distributions of hidden units in a neural network.

represented by the internal representations of deep Gaussian
processes, which are multivariate Gaussian distributions.

Next, we empirically show the distribution of units in the
hidden layers with a toy experiment. We train a 20-layer
fully-connected neural network with dropout operation and
Rectified Linear Unit (ReLU) activation function (except for
the output layer) to learn the sum of 200 independent Gaussian
variables. We randomly pick one hidden unit from the second
and the third layer respectively. Then, we run the whole neural
network for 25,000 times with random dropout masks and
record generated samples from these two hidden units. The
generated distributions are shown in Figure 1.

The output distributions of two hidden units in Figure 1
clearly exhibit the shapes of bell curves with different means
and variances. This toy example shows that the distributions of
internal hidden units of a neural network can be approximated
by the multivariate Gaussian distribution empirically.

In this section, we argued, both theoretically and empiri-
cally, for our choice of using the multivariate Gaussian dis-
tributions to approximate the output distributions of layers in
the neural network. In the following subsections, we will show
the technical details of approximating output distributions of
basic operations by the multivariate Gaussian distribution with
a diagonal covariance matrix.

B. Approximation criteria

The core contribution of ApDeepSense is to extend the
basic operations in the stochastic neural networks (generated
by dropout) to output not only an expected value but also a
probability distribution of the output random variable. Since
computing the exact output distribution is not tractable, ap-
proximation is needed. In ApDeepSense, we approximate the
output distribution with the multivariate Gaussian distribution
based on minimizing the Kullback-Leibler (KL) divergence
between the real and approximate distributions.

Since we discuss the multivariate Gaussian distribution with
a diagonal covariance matrix, without loss of generality, we
mainly focus on the analysis of the output distribution with a
single element in the rest of paper.

We begin by introducing Lemma 1 as follows.

Lemma 1. Assume that the exact output distribution is p(x)
and the approximate output distribution is q(x) ~ N(p, c?).
Finding the best fitting q(x) according to KL divergence is
equivalent to moments matching between p(z) and q(x).



Proof. The main objective function for the approximation is

min KL(p(2)llg(2)),
>dx

i oos (22
(

/ p() Iog N (41, 0)dx

= min —
2,02
. o?) | Jp)(z -
I R 202

In order to obtain the optimal ¢(z), we take derivative over
i and 02 and make them equal to 0. Then we can obtain the

solution
. / p(x)zdz, @)
o’ = / p(a)(z — p)’da. )
O

Therefore, according to (4) and (5), the approximation
process for each operation can be viewed as mean and variance
matching between the exact output distribution p(z) and the
approximating distribution ¢(z).

C. Approximating matrix multiplication with dropout

We start with the basic matrix multiplication operation with
dropout. The operation can be formulated as:

z[; ~ Bernoulli(py;),

xpi) ~ N (i, o) ©
W= diag(z)W,
y = xW + b

As shown in (6), elements in the vector of Bernoulli vari-
ables z and the vector of Gaussian variables x are independent
random variables. According to Lemma 1, we need to calculate
the means and variances of the output distribution p(y).

First, we calculate the mean of output variables,

Ely] = [ZXmZh W)

_Zp‘[z

Then, we calculate the variance of output variables. Since
the output variable y[; is the sum of independent variable
X[i2[i) Wi,j]» according to Bienaymé formula [28], the vari-
ance of the sum of independent random variables is the sum
of their variances,

Var| y[J =Var [ Z X[ }
= Var[x(;z; W ]

= Z E (02 Wi )’

@)
i Wi g

2
— E[x};)2[) Wy ;]
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—Z]E X[Z
=Z iy

E[2)*Wiii)® — b P Wi )

P Wiig”® — ki’ * Wi

®)

However, (7) and (8) are not represented in matrix forms
that can be efficiently computed with standard deep learning
libraries such as TensorFlow, MXNet, and Theano. If we
denote element-wise multiplication as notation © and denote
X2 ¥ X X, we can represent the matrix form of (7) and
(8) as:

Ely]
Var|y]

(LOP)W,
(*+0%) Oop—p’oOp”)W?
Therefore, we can efficiently compute the output distribution

of matrix multiplication with dropout, p(y) ~ N (E[y], Var[y])
through (9) and (10).

(&)
(10)

D. Approximating activation functions

Next, we describe how to compute the output distribution of
activation functions. All commonly used activation functions
are element-wise operations. Hence, without loss of generality,
we focus on the operation applied on each input random
variable. We assume that the activation function with random
variable is formulated as:

fy);

xp) ~ N (i,
v = f(xp),

where f(-) is the element-wise activation function.

According to (11), an activation function on random vari-
ables can be regarded as the composition of input random
variable x[; with function f(-). However, the challenge is
that computing the mean and variance of composed random
variables with an arbitrary non-linear function is usually not
amenable to a closed-form solution. ApDeepSense tackles this
challenge by further approximating non-linear functions with
piece-wise linear functions. Since the linear transformation
of Gaussian random variables is well-understood, we can
calculate the mean and variance of an output Gaussian random
variable with a piece-wise linear transformation.

We assume that the whole axis (—oo, +00) is divided into
P parts, namely (a,,b,) forp=1,---, P, where b, = a1,
a; = —00, and bp = +00. The pre-defined piece-wise linear
activation function f(-) is a linear function y, = k-2 +c, on
each interval (ay, b,). One example of approximating sigmoid
function with piece-wise linear function can be found in [29].
The input random variable follows a Gaussian distribution:
z~N(u,o?).

Then, we calculate the mean and variance of the output

distribution y = f(z) respectively.

an

P
py = Ely =) E,y (12)
=1
P b:
= Z/ (kpx + ¢p) - N (1, 02)da. (13)
p=1"%



P

E[(y — Ny)g} = ZEP[(?J - Uy)Q]

p=1

P by
S [t = ) Mo (15)
p=1"%

(14)

We calculate the mean and variance by considering the case
where k, # 0 and k, = 0.

1) When k, # 0: Within the interval (a,,b,), y = f(x) fol-
lows a Gaussian distribution N (1, 0,,2), where p,, = kpp+c,
and o, = |k,|o. Then E,[y] (13) can be reformulated as:

bp
Ep[y] = / Y 'N(Hpvgpz)dya

where a, = kya, + ¢, and Bp = kpbp + cp.
We assume that

by
My = [ Ny 0
b
D, = N(p,0?)da. a7
Then we can obtain the representation of E,[y] as:
Eply] = pp - Dp + Mp. (18)
Similarly, E,[(y — py)?] (15) can be reformulated as:
by
Byl — 1)) = [0 1) N0,
ap
We further assume that
by
Vo = / (Y = 1p)* - N (pp, 0%)dy. (19)
a.

Then we can obtain the representation of E,[(y — u,)?] as:
EP[(?J‘N@/)2] = Vp+2(pp — py) - Mp+ (1p _Hy)2 -Dyp. (20)
2) When k, = 0: In this case, f(-) is a constant function,
which usually exists when p = 1 or p = P. Then we can
easily obtain that
(21)
(22)

E,[y] Cp - Dy,

Ey[(y - Uy)Q} (cp — ,uy)2 - Dp.

3) Summary: Once we can calculate M,, D,, V,, we
can then obtain the approximate output distribution y ~
N (py,0,?) generated by mean (12) and variance (14) with
corresponding P components in (18), (20), (21), and (22).

Clearly, (16), (17), and (19) can be calculated efficiently in
closed form with basic math operations and the error function
erf(-), which all have corresponding APIs in standard deep
learning libraries such as TensorFlow and Theano.

D, = % (erf(bg_;)ferf(ag\;;)), (23)
e = | (- )
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b, — 2
fcxp(f ( pQUp/;p) )>’ (24)
2
Vp = % ((ap Iip) exp(— ( p20pl;p) )
~ T2
— (b, *up)exp(f ( pQU/;p) )>
P
oy’ by — Hp _ ap — fip
+7 <erf( Up\/i) erf( ap\/i )>.(25)

Then, E,[y] and E,[(y — p,)?] can be calculated with (23),
(24), and (25). Therefore, the final output distribution of the
activation function f(-) is

Yy~ N(/J'y: Uy2)7

P
ty =D Eplyl,
y ,; p 06)
P
Uy2 = ZEP[(y - Ny)ZL
p=1

Above, we have described the main technical details of
ApDeepSense. The basic operations within a fully-connected
neural network, such as matrix multiplication with dropout and
activation function, now support taking probabilistic distribu-
tions as inputs and generate distributions as outputs. Hence,
the distribution of the final output can be computed. Narrower
distributions offer less uncertainty, whereas flatter distributions
offer more uncertainty.

IV. EVALUATION

In this section, we evaluate the quality of the computed
output probability distributions by the new neural network
models. Specifically we consider the mean absolute error and
predictive log-likelihood. The former is a metric of accuracy
of the output distribution mean. The latter (predictive log
likelihood) measures the correspondence between ground truth
values and their predicted distribution. Lower numbers mean
higher correspondence. We then evaluate system performance,
such as running time and energy consumption on the Intel
Edison platform. In the following subsections, first, we in-
troduce the evaluation tasks, corresponding datasets, baseline
algorithms, and testing neural network details. Next, we eval-
uate the model performance including mean absolute error or
accuracy and negative log-likelihood for all algorithms. At last,
we show the system performance including inference time and
energy consumption on the Intel Edison platform.

A. Testing hardware

Our hardware is based on the Intel Edison computing
platform [23]. The Intel Edison computing platform is powered
by the Intel Atom SoC dual-core CPU at 500 MHz and
is equipped with 1GB memory and 4GB flash storage. For
fairness, all neural network models are run solely on CPU
during experiments.



B. Evaluation tasks and datasets

We evaluate ApDeepSense on four different IoT tasks.
Here, we introduce the details of these four tasks and their
corresponding datasets.

e BPEst: Cuffless blood pressure monitoring through pho-
toplethysmogram. The first task monitors cuffless blood
pressure through a photoplethysmogram from a fingertip.
The photoplethysmogram from fingertip (PPG) and arterial
blood pressure (ABP) signal (mmHg) is extracted for the
non-invasive cuffless blood pressure monitoring task.> The
target of BPEst task is to infer the waveform of ABP
based on the waveform of PPG collected from fingertips,
estimating a 2-second ABP waveform (250 samples) based
on the corresponding 2-second PPG waveform.

o NYCommute: Commute time estimation of New York City.
This second task estimates commute time in New York
City through the pick-up time and location as well as the
drop-off location, which is an important component in smart
transportation. We use (parts of) the yellow and green taxi
trip records within January 2016 as the training, validation,
and testing datasets.> The input of the learning model
is a vector with 5 elements, containing the standardized
longitude and latitude of the pick-up and drop-off location
as well as the pick-up time within a day. The output of the
learning model is the commute time.

e GasSen: Estimate dynamic gas mixtures from chemical sen-
sors. The third task estimates real concentration of Ethylene
and CO gas mixture from an array of 16 low-end chemical
sensors. ¢ Gas concentrations range from 0 — 600 parts-
per-million (ppm). The learning model is trained and tested
to predict the concentration Ethylene and CO gas mixtures
through the vector of 16 sensor inputs.

o HHAR: Heterogeneous human activity recognition. The pre-
vious three tasks are all regression tasks, but this one is a
classification task. Heterogeneous means that we are testing
on a new user who has not appeared in the training set.
This dataset contains readings from two motion sensors
(accelerometer and gyroscope). The dataset contains 9 users,
6 activities (biking, sitting, standing, walking, climbStair-up,

and climbStair-down), and 6 types of mobile devices .

C. Testing models and uncertainty estimation algorithms

For each experiment, we use two pre-trained neural net-
works with the same structure but different activation func-
tions.

e DNN-ReLU: A 5-layer fully-connected neural network with
512 hidden dimension and ReL.U activation function. Since
ReLU is already a piece-wise linear function, no activation
function approximation is needed.

2https://archive.ics.uci.edu/ml/datasets/Cuff- Less+Blood+Pressure+
Estimation

3http://www.nyc.gov/html/tic/html/about/trip_record_data.shtml

4https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+
gas+mixtures

Shttps://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+
Recognition
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DNN-Tanh: A 5-layer fully-connected neural network
with 512 hidden dimension and Tanh activation function.
ApDeepSense uses a piece-wise linear function with 7
pieces to approximate Tanh in all experiments.

During all experiments, we compare two output uncertainty

estimation algorithms.

ApDeepSense: The algorithm we propose in this paper.
MCDrop-k: A sampling-based unbiased uncertainty estima-
tion method for deep neural network with dropout. This
algorithm generates k output samples with random dropout
masks, and then estimates predictive uncertainties based on
these k& output samples [21]. During all experiments, we
choose k = [3,4, 10, 30, 50].

RDeepSense: An efficient uncertainty estimation method
for deep neural network that requires retraining [22]. We
introduce this method to illustrate the upper bound of model
estimation performance can be achieved with retraining.

D. Model estimation performance

In this subsection, model estimation performance is dis-

cussed for four tasks. For each task, two measures are used
to show the bias-variance tradeoff among different output
uncertainty estimation algorithms. For regression tasks, mean
absolute error (MAE) and negative log-likelihood (NLL)
are measured. For classification tasks, accuracy (ACC) and
negative log-likelihood (NLL) are measured. Negative log
likelihood depends on the output uncertainty. It is a popular
metric for evaluating output uncertainty [30].

1) BPEst: We compare all the algorithms for two pre-

trained neural networks based on mean absolute error (MAE)
and negative log-likelihood (NLL), which is illustrated in
Table L.

TABLE I: Mean Absolute Error (MAE) and Negative
Log-Likelihood (NLL) for the BPEst task.

\ [ MAE | NLL |

DNN-ReLU-ApDeepSense | 13.41 4.56
DNN-ReLU-MCDrop-3 13.91 57.72
DNN-ReLU-MCDrop-5 13.68 7.89
DNN-ReLU-MCDrop-10 13.50 5.74
DNN-ReLU-MCDrop-30 13.38 5.14
DNN-ReLU-MCDrop-50 | 13.35 5.06
DNN-ReLU-RDeepSense 14.18 3.46

DNN-Tanh-ApDeepSense | 19.38 5.39
DNN-Tanh-MCDrop-3 19.61 | 520.30
DNN-Tanh-MCDrop-5 19.51 56.74
DNN-Tanh-MCDrop-10 19.39 | 32.68
DNN-Tanh-MCDrop-30 19.32 | 25.19
DNN-Tanh-MCDrop-50 19.30 | 23.99
DNN-Tanh-RDeepSense 19.38 4.53

For both pre-trained neural networks, DNN-ReLU and

DNN-Tanh, ApDeepSense is consistently the best predic-
tive uncertainty estimator with the smallest NLL. The result
shows that approximation method used in ApDeepSense works
well in the real dataset. The experiments with DNN-Tanh
demonstrate the effectiveness of approximating non-linear
activation functions with piece-wise linear functions. Notice



that ApDeepSense is not the best-performing algorithm with
respect to MAE. ApDeepSense achieves a better bias-variance
tradeoff by directly approximating the output distribution.

2) NYCommute: We compare all the algorithms for two
pre-trained neural networks based on mean absolute error
(MAE) and negative log-likelihood (NLL), which is illustrated
in Table II.

TABLE II: Mean Absolute Error (MAE) and Negative
Log-Likelihood (NLL) for the NYCommute task.

[ MAE | NLL
DNN-ReLU-ApDeepSense | 5.44 | 135.19
DNN-ReLU-MCDrop-3 5.54 | 6569.04
DNN-ReLU-MCDrop-5 5.50 | 1898.79
DNN-ReLU-MCDrop-10 5.47 | 1140.90
DNN-ReLU-MCDrop-30 5.45 889.60
DNN-ReLU-MCDrop-50 5.44 838.94

DNN-ReLU-RDeepSense 5.64 7.7

DNN-Tanh-ApDeepSense | 6.41 | 123.75
DNN-Tanh-MCDrop-3 6.59 | 7517.95
DNN-Tanh-MCDrop-5 6.54 892.34
DNN-Tanh-MCDrop-10 6.51 443.04
DNN-Tanh-MCDrop-30 6.48 332.42
DNN-Tanh-MCDrop-50 6.47 321.73
DNN-Tanh-RDeepSense 6.59 14.11

ApDeepSense is consistently the best-performing algorithm
for both the MAE and NLL measures. The sampling-based
algorithm MCDrop shows inferior performance even with 50
samples, i.e., running the whole neural network for 50 times.
The result implies that even more samples are required for
MCDrop to compete with ApDeepSense.

3) GasSen: We still compare all the algorithms for two
pre-trained neural networks based on mean absolute error
(MAE) and negative log-likelihood (NLL), which is illustrated
in Table III.

TABLE III: Mean Absolute Error (MAE) and Negative
Log-Likelihood (NLL) for the GasSen task.

\ | MAE [ NLL |
DNN-ReLU-ApDeepSense | 19.42 | 40.21
DNN-ReLU-MCDrop-3 21.17 | 456.59
DNN-ReLU-MCDrop-5 20.36 | 342.13
DNN-ReLU-MCDrop-10 19.66 | 333.52
DNN-ReLU-MCDrop-30 19.27 | 303.66
DNN-ReLU-MCDrop-50 19.15 | 290.51
DNN-ReLU-RDeepSense | 15.25 3.77
DNN-Tanh-ApDeepSense | 39.20 6.32
DNN-Tanh-MCDrop-3 35.74 | 103.73
DNN-Tanh-MCDrop-5 32.76 | 41.67
DNN-Tanh-MCDrop-10 32.30 | 25.13
DNN-Tanh-MCDrop-30 31.71 19.74
DNN-Tanh-MCDrop-50 31.57 18.81
DNN-Tanh-RDeepSense 19.36 4.23

ApDeepSense still outperforms all the algorithms for
uncertainty estimation with NLL metric. In this dataset,
ApDeepSense still achieves a bias-variance tradeoff with better
NLL. Specially in the DNN-Tanh network, we can clearly see
that ApDeepSense sets the uncertainty estimation as its first

TABLE IV: Accuracy (ACC) and Negative Log-Likelihood (NLL)
for the HHAR task.

[ [ ACC [ NLL |

DNN-ReLU-ApDeepSense | 79.12% | 1.02
DNN-ReLU-MCDrop-3 73.79% | 1.479
DNN-ReLU-MCDrop-5 75.34% | 1.476
DNN-ReLU-MCDrop-10 | 76.38% | 1.475
DNN-ReLU-MCDrop-30 76.24% | 1.475
DNN-ReLU-MCDrop-50 76.72% | 1.476
DNN-ReLU-RDeepSense | 83.98% | 0.16
DNN-Tanh-ApDeepSense | 73.57% | 0.23
DNN-Tanh-MCDrop-3 70.43% | 1.45
DNN-Tanh-MCDrop-5 71.07% 1.38
DNN-Tanh-MCDrop-10 71.68% 1.33
DNN-Tanh-MCDrop-30 72.81% 1.31
DNN-Tanh-MCDrop-50 73.29% 1.29
DNN-Tanh-RDeepSense 86.78% | 0.21

priority. As we mentioned in the experiment on BPEst task, it
is due to the nature of distribution approximation within the
ApDeepSense.

4) HHAR: Since HHAR is a classification task, we compare
all the algorithms for two pre-trained neural networks based
on accuracy in percentage (ACC) and negative log-likelihood
(NLL), which is illustrated in Table IV.

ApDeepSense outperforms the other algorithms according
to ACC and NLL metrics. ApDeepSense achieves both better
classification results and likelihood estimation at the same
time.

E. System performance

In this subsection, we compare the system performances
for all uncertainty estimation algorithms, including inference
times, energy consumption, and model and system perfor-
mance tradeoff. All the experiments are conducted on Intel
Edison platform with the CPU unit. All the experiments
are conducted for 5000 times and the mean values of such
experimental results are reported.

First, we illustrate the inference time and energy consump-
tion of all algorithms for all BPEst, NYCommute, GasSen, and
HHAR tasks in Figures 2, 3, 4, and 5 respectively. We can see
that ApDeepSense saves around 94.1% and 83.6% inference
time in average for DNN with ReLU and Tanh activation
function respectively. At the same time, ApDeepSense saves
around 94.2% and 85.7% energy consumption in average for
DNN with ReLU and Tanh activation function respectively.
Here is the main reason for this improvement. MCDrop-50
runs the original neural network for 50 times. ApDeepSense
uses a piece-wise linear function with 2 pieces to approximate
ReLU function and a piece-wise linear function with 7 pieces
to approximate Tanh function. Therefore, ApDeepSense theo-
retically can save around 1—2/50 = 96% and 1—7/50 = 86%
computations for DNN-ReLU and DNN-Tanh respectively,
which agrees with our empirical results.

Then we analyze the relationship between the energy con-
sumption and quality of uncertainty estimation for all algo-
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rithms. In this experiment, we use the negative log-likelihood
(NLL) to represent the quality of uncertainty estimation.
Smaller NLL means better uncertainty estimation quality. The
experimental results are illustrated in Fig. 6, 7, 8, and 9.

The points in the left-bottom corner of these graphs rep-
resent better tradeoffs between energy consumption and un-
certainty estimation (i.e., , consuming less energy to achieve
a predictive distribution with lower negative log-likelihood).
Therefore, these tradeoffs shows that ApDeepSense is a more
effective and efficient uncertainty estimation algorithm for
deep neural networks.

V. RELATED WORK

Reliability and uncertainty estimation is an important topic
in the area of Internet of Things. Zhou et al. [31] modelled
ego-motion uncertainty on I[oT platform. Van et al. [32]
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applied sensing uncertainty on mobile robots controlling with
collision avoidance. Wang et al. [33] used uncertainty esti-
mation to design the optimal sensor sampling policy. Jin et
al. [34] proposed a holistic framework that optimizes both
reliability and temporality for multiple coexisting networks.
Recently, deep learning models were considered in IoT-
related systems. Lane er al. [16] applied deep learning to
solve audio sensing tasks. Yao et al. [17] proposed a uni-
fied deep learning model that fuses multiple sensor inputs
and extracts time dependencies from sensing data. Yao et
al. [35] proposed a structure compression algorithm for neural
networks, improving the system efficiency on low-end IoT
devices. However, less attention has been paid to estimating
deep learning uncertainty in an IoT system. Recent studies
provide a theoretically justified output uncertainty estima-
tion method for neural networks [21]. However, it relies on
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computationally intensive operations that are not practical
for mobile computing applications. Recent work propose an
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energy-efficient uncertainty estimation algorithm for neural
networks [22]. However, users have to retrain the whole neural
network according to the proposed design specifications.

To the best of our knowledge, ApDeepSense is the first
energy-efficient test-time uncertainty estimation algorithm for
trained deep neural networks deployed on IoT devices.

VI. CONCLUSION

We described ApDeepSense, an effective and efficient
uncertainty estimation algorithm for fully-connected neural
networks. ApDeepSense solves the problem of providing
uncertainty estimations for neural networks without further
structure-changing or re-training by adopting a novel layer-
wise distribution approximation method. In addition, piece-
wise linear functions are used to approximate nonlinear acti-
vation functions for deriving an efficient closed-form solution.
Experiments on the Intel Edison platform with four mobile
computing tasks show that ApDeepSense saves around 90%
inference time and energy consumption to provide uncertainty
estimations with smaller negative log-likelihood measures
compared with the state-of-the-art baseline algorithm.

The paper leaves exciting oppoertunities for future work.
For example, currently, ApDeepSense can only support fully-
connected neural networks. It is possible to extend the so-
lution proposed in Section III to convolutional and recurrent
neural networks by replacing the original dropout operation
with convolutional dropout [36] and recurrent dropout [37].
These two dropout operations can convert convolutional neural
networks and recurrent neural networks into Bayesian neural
networks. However, challenges still exist in extending related
operations, such as convolution, to apply to probabilistic
distribution inputs and offer closed-form output distribution
using APIs in standard deep learning libraries. Such extensions
and approximations are a topic of future work of the authors.
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