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ABSTRACT
Deep learning has recently demonstrated state-of-the art perfor-
mance on key tasks related to the maintenance of computer systems,
such as intrusion detection, denial of service attack detection, hard-
ware and software system failures, and malware detection. In these
contexts, model interpretability is vital for administrator and ana-
lyst to trust and act on the automated analysis of machine learning
models. Deep learning methods have been criticized as black box or-
acles which allow limited insight into decision factors. In this work
we seek to “bridge the gap” between the impressive performance
of deep learning models and the need for interpretable model intro-
spection. To this end we present recurrent neural network (RNN)
language models augmented with attention for anomaly detec-
tion in system logs. Our methods are generally applicable to any
computer system and logging source. By incorporating attention
variants into our RNN language models we create opportunities for
model introspection and analysis without sacrificing state-of-the
art performance. We demonstrate model performance and illustrate
model interpretability on an intrusion detection task using the Los
Alamos National Laboratory (LANL) cyber security dataset, report-
ing upward of 0.99 area under the receiver operator characteristic
curve despite being trained only on a single day’s worth of data.
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1 INTRODUCTION
System log analysis is critical for a wide range of tasks in main-
taining large scale computer systems such as enterprise computer
networks and high performance computing clusters. These include
security tasks such as intrusion detection, insider threat detection,
and malware detection, as well as more general maintenance tasks
such as detecting hardware failure and modeling data or traffic flow
patterns. Extracting knowledge from information rich system logs
is complicated by several factors:

(1) Log sources can generate terabytes of data per day.
(2) Labeled data for application areas of interest is often scarce,

unbalanced, or system specific.
(3) Actionable information may be obscured by complex, undis-

covered relationships across logging sources and system
entities (e.g. users, PCs, processes, nodes).

Due to these factors, unaided human monitoring and assess-
ment is impractical, so considerable research has been directed to
automated methods for visualization and analysis of system logs.
Furthermore, as administrative decisions may be of considerable
consequence to organizations and associated persons, it is crucial
to have some understanding of the factors involved in automated
decision processes, even for highly effective algorithms.

Addressing these factors, we present unsupervised recurrent
neural network (RNN) language models for system log anomaly
detection. By modeling the normal distribution of events in system
logs, the anomaly detection approach can discover complex rela-
tionships buried in these logs. Since the methods are unsupervised,
the models do not depend on the time consuming and otherwise
expensive procurement of labeled data. Our language modeling
framework requires little to no feature engineering: it is applicable
to any serializable logging source. Further, the models are trained
online using bounded resources dictated by the daily volume of the
log sources.

Our main contributions in this work are twofold: 1) we evaluate
the effectiveness of augmenting RNN language models with several
attention mechanisms specifically designed for system log anomaly
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detection, and 2) we illustrate how model introspection in these
systems is made possible by the attention mechanisms.

2 RELATEDWORK
Recently, several researchers have used Long Short-Term Memory
(LSTM) Networks [7] in system log analysis. Zhang et al. [23] use
clustering techniques on the raw text from multiple log sources
to generate feature sequences fed to an LSTM for hardware and
software failure predictions. Du et al. [5] employ customized pars-
ing methods on the raw text of system logs to generate sequences
for LSTM Denial of Service attack detection. In contrast to these
methods our approach works directly with raw text with no pre-
processing beyond tokenization using known field delimiters. Oth-
ers have incorporated LSTM networks to preprocess sequences of
process API calls as components to malware detection systems [14]
trained on labeled malware examples.

Attention-equipped LSTM models have been used to improve
performance on complex sequence modeling tasks. Attention pro-
vides a dynamic weighted average of values from different points
in a calculation during the processing of a sequence to provide long
term context for downstream discriminative or generative predic-
tion. In recent work [4, 16, 22], researchers have augmented LSTM
language models with attention mechanisms in order to add capac-
ity for modeling long term syntactic dependencies. Yogatama et al.
[22] characterize attention as a differentiable random access mem-
ory. They compare attention language models with differentiable
stack based memory [6] (which provides a bias for hierarchical
structure), demonstrating the superiority of stack based memory
on a verb agreement task with multiple attractors. Daniluk et al. [4]
explore three additive attention [2] mechanisms with successive
partitioning of the output of the LSTM; splitting the output into
separate key, value, and prediction vectors performed best, likely
due to removing the need for a single vector to encode information
for multiple steps in the computation. In contrast we augment our
language models with dot product attention [11, 18], but also use
separate vectors for the components of our attention mechanisms.

Many decision processes raise ethical dilemmas [12] or are ap-
plied in critical domains with high consequence. Such factors ne-
cessitate human interpretation of how a model is generating its pre-
dictions to ensure acceptable results. Vellido et al. [19] observe the
gap between data modeling, knowledge extraction, and potential
machine learning solutions, underscoring the need for interpretable
automated decision processes. However, interpretability has multi-
ple goals that are not always aligned with production of the most
generalizable model architecture [10]. Hence, there is currently a
large research focus on making interpretable deep learning algo-
rithms for sensitive and critical application areas. Some proposed
model introspection techniques include dimensionality reduction
[20], analysis of intermediate layers [1] and saliency based methods
[3, 13]. In contrast to other deep learning components, attention
mechanisms allow an immediate view into what factors are affect-
ing model decisions. Xu et al. [21] examine attention weights to
determine what convolutional neural networks are “looking” at
while making predictions. Similarly, Rocktäschel et al. [15] analyze
matrices of word-to-word attention weights for insight into how
their LSTM entailment classifier reasons about sentences. We apply

1,C6@D1,U7@D2,C6,C6,Negotiate,Batch,LogOn,Success
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x9 x10x5 x6
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x46x47

… …
Figure 1: Top: Word tokens; Bottom: Character tokens

the same concept to explore what factors our models attend over
when predicting anomaly scores.

3 METHODS
Here we describe the unsupervised language modeling framework
and its extension via five variations of attention. In each case, the
language models consume a sequence of log-line tokens and output
log-line-level anomaly scores.

3.1 Preliminaries
3.1.1 LanguageModeling. We assume that each log-line consists

of a sequence of T tokens: x(1:T ) = x(1),x(2), . . . ,x(T ). Each token
x(t ) ∈ V, whereV denotes the vocabulary. A language model is a
model that assigns probabilities to sequences: P(x(1:T )). A language
model often evaluates the probability of a sequence using the chain
rule of probability:

P(x(1:T )) =
T∏
t=1

P(x(t ) |x(<t )) (1)

where x(<t ) denotes the (potentially empty) sequence of tokens
from x(1) to x(t−1). The conditional probabilities on the righthand
side can be modeled with a recurrent neural network, as will be
described in the Section 3.2.

Our data consist of a series of log-lines, each affiliated with a user.
We denote user u’s ith log-line with x (u,i)(1:T ), but omit the superscript
when it is non-essential. Our language models all output a single
anomaly score, the negative log-likelihood, for each log-line.

3.1.2 Tokenization. Figure 1 illustrates two methods to partition
log lines into sequences of tokens: word and character tokenization.
For word based language modeling, the tokens are the fields of
the CSV format log file. The user fields are further split on the “@”
character to generate user name and domain tokens. A frequency
threshold is applied to replace infrequent words with an “out of
vocabulary” (OOV) token; a value must occur in a field at least 40
times to be added to the vocabulary. The OOV token ensures that
our models will have non-zero probabilities when encountering
previously unseen words during evaluation.

For character based language modeling we use a primitive vo-
cabulary consisting of printable ASCII characters. This circumvents
the out of vocabulary issues with the word model. Delimiters are
left in the character inputs to give context of switching fields to the
models. For both word and character tokenization, the time field is
ignored and not tokenized.
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Figure 2: Tiered language model (T-EM) [17].

3.2 Cyber Anomaly Language Models
We recently introduced a language modeling framework for cyber
anomaly [17] that forms the starting point of this work. The first
of four models presented in [17] is the “Event Model” (EM), which
applies a standard LSTM [7] to the token sequences of individual
events (log-lines). In order to feed the categorical tokens x(1:T ) into
the model, we first perform an embedding lookup on each token
to yield the sequence x(1:T ) (bold font), where each x(t ) ∈ RLemb

for some embedding dimension hyperparameter, Lemb . There are
unique embedding vectors for each element in the vocabulary; these
embedding vectors are parameters of the model, learned jointly
with all other model parameters. An LSTM maps an embedding
vector sequence to a sequence of hidden vectors h(1:T ):1

LSTM(x(1:T )) = h(1:T ) (2)

Intuitively, h(t ) is a summary of the input sequence x(1:t ) defined
by the same, standard LSTM equations used in [17]. Given the
previous hidden state h(t−1), weight matrix W and bias vector b,
the probability distribution over the token at step t is:

p(t ) = softmax
(
h(t−1)︸︷︷︸
Lh

W︸︷︷︸
Lh×|V |

+ b︸︷︷︸
|V |

)
∈ R |V | (3)

This conditions each prediction on all tokens that precede it in the
log-line. The second model in [17] is the Bidirectional Event Model
(BEM), which updates Eqn. 3 to also incorporate the hidden state
from a backward-running LSTM, with hidden vector hb(t+1) and
additional weight matrixWb as follows:

p(t ) = softmax
(
h(t−1)W + h

b
(t+1)W

b + b
)

(4)

The BEM conditions each prediction on the all of the other tokens
in the log-line (preceding or following), for richer context.

The EM and BEM only condition predictions on other tokens in
the same log line. However, Tuor et al. [17] also introduce tiered
language model variants that employ an “upper tier” LSTM to
model a user’s sequence of log-lines (see Fig. 2). Each log-line is still

1In this paper we assume all vectors are row vectors and adopt the notation convention
of left multiplying matrices with row vectors (omitting the conventional transpose to
avoid clutter).

Figure 3: Dot Product Attention.

modeled by an EM or BEM, but the input is the concatenation of
embedding vectors xt along with a context vector produced by the
upper tier LSTM. The upper tier LSTM takes as input a summary
of the lower-tier hidden states (the average lower-tier hidden state
concatenated with the final hidden state). The upper and lower tiers
are trained jointly. For later reference, we name these models T-EM
and T-BEM, respectively.

For all language models (including the tiered models which in-
corporate inter-log-line context) we optimize the model parameters
by minimizing the negative log-likelihood produced by EM or BEM
predictions. The negative log-likelihood minimization objective
also serves as the anomaly score for the log line (less probable
events receiving higher anomaly scores).

3.3 Attention
In this work we use dot product attention (Figure 3), wherein an
“attention vector” a is generated from three values: 1) a key matrix
K, 2) a value matrix V, and 3) a query vector q. In this formulation,
keys are a function of the value matrix:

K = tanh(VWa ), (5)

parameterized by Wa . The importance of each timestep is deter-
mined by the magnitude of the dot product of each key vector with
the query vector q ∈ RLa for some attention dimension hyperpa-
rameter, La . These magnitudes determine the weights, d on the
weighted sum of value vectors, a:

d = softmax(qKT ) (6)
a = dV (7)

In an LSTM, the information relevant to a given prediction (e.g.
of the next token, x(t+1)) is accumulated and propagated via the
LSTM’s cell state, c(t ). For any given prediction, however, certain
tokens are likely to bemore relevant than others. Attention provides
a mechanism for predictions to be directly, selectively conditioned
on a subset of the relevant tokens. In practice, this is accomplished
by making p(t ) a function of the concatenation of h(t−1) with an
attention vector a(t−1) that is a weighted sum over hidden states :

p(t ) = softmax
( [
h(t−1) a(t−1)

]
W + b

)
(8)

This attention mechanism not only introduces shortcuts in the
flow of information over time, allowing the model to more readily
access the relevant information for any given prediction, but the
weights on the weighted sum also yield insights into the model’s
decision process, aiding interpretability.
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We first examine the case of adding attention to the standard
EM. Each token-step t is associated with its own value matrix V(t ),
and query vector q(t ). The value matrix V(t ) is the matrix of hidden
states up to but excluding token-step t , where Lh is the dimension
of the LSTM hidden states. These are the values over which the
weighted sum will be performed.

V(t ) =


h(1)
...

h(t−1)

 ∈ R
(t−1)×Lh (9)

From the value matrix and weight matrix Wa ∈ RLh×La , we com-
pute a set of keys for each token/step:

K(t ) = tanh(V(t )Wa ) ∈ R(t−1)×La (10)

Then,

d(t ) = softmax(q(t )KT(t )) (11)

a(t ) = d(t )V(t ) (12)

Our EM attention variants differ primarily in the definition of
the query vector q(t ).

3.3.1 Fixed Attention. In the fixed variation of attention [16]
we let q(t ) = q for some fixed, learned vector q that is shared across
all tokens/steps. This assumes some positions in the sequence are
more important than others, but that importance does not depend
on the token one is trying to predict.

3.3.2 Syntax Attention. Syntax attention differs from fixed at-
tention in that q(t ) is not shared across t . This assumes that some
tokens are more important than others and this importance depends
on the position in the sequence for the token to predict, but not on
the actual values for tokens x1, . . . ,xt−1.

3.3.3 Semantic Attention 1. For the first “semantic” variation,
our query is a a function of the current hidden state and parameter
matrixWsem1 ∈ RLh×La :

q(t ) = tanh(h(t )Wsem1) (13)

3.3.4 Semantic Attention 2. Instead of making q(t ) a function of
h(t ), in this variant we interpret each h(t ) emitted from the LSTM as
the concatenation of two vectors: h′(t ) and q(t ). The query portion,
q(t ) is used as before, but now the value V(t ) defined in Eqn. 9
contains h′(1) through h′(t−1). Note that, per the LSTM equations,
both h′(t ) and q(t ) will be fed back into the LSTM at time t + 1.

3.3.5 Tiered Attention. As shown in Fig. 2, in original formu-
lation of the tiered model, the lower tier LSTM hidden states are
averaged in the process of passing information from the lower
tier to the upper tier. Implementation of attention for the tiered
language models replaces this mean with a weighted average via
attention. Let V(u,i) be the lower tier hidden states for user u’s ith
log line:

V(u,i) =


h(u,i)(1)
...

h(u,i)(T )


(14)

Figure 4: Event Model (EM) with attention. Dotted lines in-
dicate which hidden states are being attended over.

Figure 5: Tiered attention with bidirectional lower tier

LetWt ier ∈ RLk×La andWa ∈ RLa×Lk be parameter matrices.
We then define the following attention mechanisms:

q = tanh(h(T )W(t ier )) (15)
K = tanh(VWa ) (16)
d = softmax(qKT ) (17)
a = dV (18)

We then replace the average of the hidden states in the tiered model
with a. Note that each sequence shares weights Wa and Wt ier .
The BEM tiered attention model (TA-BEM) is depicted in Figure 5.

3.4 Online Training
We employ a syncopated online training algorithm, which both
allows our model to continually adapt to changing distributions
of activities on a network and to be deployed on high throughput
streaming data sources. At the beginning of each day/cycle, the
parameters of the current model are fixed for evaluation, thereby
avoiding evolving anomaly score scale issues that could result from
continuous online training. After anomaly scores have been calcu-
lated for the day’s events we train on the current day’s events. The
days events are then discarded, bounding the storage demands of
the algorithm to a day’s worth of activity (plus model parameters).
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On the first day we do not evaluate as the model has not had a
training phase yet.

At the cost of the additional space complexity of storing two
copies of the model parameters, the training and evaluation phases
can be run concurrently. The evaluation and training parameters
are then synced daily so that the evaluation copy is updated with
the parameters of the training copy at the beginning of each day.

4 EXPERIMENTS
This section discusses the data, experimental setup, evaluation met-
rics, and results assessing performance for the proposed methods.

4.1 Data
We evaluate our models on the publicly available LANL [8] dataset.
LANL consists of over one billion log lines collected over 58 con-
secutive days. The logs contain anonymized process, network flow,
DNS, and authentication information. Interleaved are attacks by a
red team. Our experiments focus on modeling the authentication
logs, which contain the following fields:

Source user, Destination user, Source pc, Destination pc,
Authentication type, Logon type, Authentication orientation,
Success/failure.

These events are collected from desktop PCs, servers, and active di-
rectory servers using the Windows OS. We filter automated system
events by discarding all log-lines that have a machine listed as the
source user. Red team event log-lines are indicated in the dataset.
As our models are fully unsupervised, we use the red team labels
only for evaluation of model performance.

4.2 Experimental Setup
To assess our model’s ability to spin up rapidly and detect anomalies
withminimal burn-in time, we limit our scope to days 7 and 8, which
contain 1 and 261 red team events respectively. Each of these days
contains over seven million user log lines. We chose these particular
days for evaluation because day 8 has the largest number of red
events in the dataset. The entire experimental process is therefore
1) train on day 7, 2) evaluate on day 8. Further simulating a rapid
deployment process, we performed no hyper-parameter tuning. Our
learning rate is fixed to 0.01; we train using the ADAM [9] optimizer;
the minibatch size is 64; our LSTMs have a single layer with 128
hidden units; our token embedding size is 128 and our attention
size is 128. To estimate model variability, we trained each model
five times with the fixed hyper-parameters but different random
weight initializations. In our results section we report statistics over
the five runs.

4.3 Metrics and Score Normalization
We evaluate our results using the area under the receiver operating
characteristic curve (AUC ROC). ROC plots the true positive rate
against the false positive rate as the detection threshold is swept.
Perfect detection yields an AUC of 1 and random guessing yields
0.5. Recall that our anomaly scores, z(u,i) are given by the sum of
the negative log probabilities of the tokens in line x(u,i)(1:T ). For word

Model Mean Max Min Std. Dev.

EM 0.968 0.976 0.964 0.005
BEM 0.976 0.981 0.972 0.003

EM with attention
Fixed 0.974 0.976 0.972 0.001
Syntactic 0.972 0.975 0.967 0.004
Semantic 1 0.975 0.980 0.971 0.004
Semantic 2 0.973 0.976 0.968 0.003

Tiered LSTM variants
T-EM 0.984 0.989 0.977 0.005
T-BEM 0.987 0.989 0.985 0.002
TA-EM 0.985 0.991 0.979 0.004
TA-BEM 0.988 0.991 0.984 0.003

Table 1: AUC statistics for word tokenization models

Model Mean Max Min Std. Dev.

EM 0.965 0.969 0.961 0.003
BEM 0.985 0.987 0.982 0.002

EM with attention
Fixed 0.963 0.971 0.937 0.015
Syntactic 0.967 0.973 0.963 0.004
Semantic 0.975 0.977 0.971 0.003
Semantic 2 0.972 0.977 0.967 0.004

Tiered LSTM variants
T-EM 0.977 0.988 0.967 0.008
T-BEM 0.992 0.992 0.991 0.000
TA-EM 0.982 0.984 0.979 0.002
TA-BEM 0.991 0.992 0.990 0.001

Table 2: AUC statistics for character tokenization models

tokenization, we center each user’s anomaly score:

z(u,i) ← z(u,i) − 1
Nu

∑
i
z(u,i),∀u , (19)

where Nu is the number of events by useru in the day. This reduces
inter-user anomaly bias, which can stem from the uneven distri-
bution of user name tokens. This normalization is unnecessary for
the character tokenization, as the user names are composed from a
common character vocabulary.

4.4 Results
In this section we discuss performance of the different attention
mechanisms. We note that variance of model performance across
random parameter initializations is quite low for most models. This
low variance given only a single day of pretraining suggests our
method behaves predictably despite rapid deployment.

4.4.1 Word Tokenization Models. Table 1 shows AUC statis-
tics for the word tokenization model experiments. Comparing the
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word level LSTM baselines, the BEM outperforms the EM. However,
adding attention to the EM improves performance to match the
BEM. All variations of attention have very similar AUC scores. We
hypothesize that the word model equally benefits from Syntax and
Semantic attention, as it has a consistent syntax structure. Tiered
word models with attention do not demonstrate as significant per-
formance gains, however, both forward and bidirectional attention
models trend slightly upwards in mean and maximum values from
their non-attention counterparts.

4.4.2 Character Tokenization Models. As shown in Table 2, the
Fixed and Syntax attention models appear ill-suited for character-
based models with variable length fields; neither Fixed nor Syntax
attention improve performance here, and the character EM model
augmented with Fixed attention has a standard deviation 2-15 times
that of other models. In contrast, semantic variants, where the
attention weights are a function of the current input as opposed
to sequence position, do improve performance but are not on par
with the BEM. For the tiered models, we see little difference by
incorporating attention, suggesting the shortcuts introduced by
attention are unnecessary to propagate user context across log-
lines. One interesting outcome is that a tiered model with either
attention or a bidirectional lower tier has reduced variance across
random initializations by a large factor for the character models.

5 ANALYSIS
While attention performs comparably to bidirectionality, it offers
substantial advantages in its interpretability. Investigating which
fields the model is attending to (and when) offers clues to its
decision-making. In this section we illustrate two approaches to
analysis of attention-equipped LSTM language models: 1) Analy-
sis of global model behavior from summary statistics of attention
weights, and 2) analysis of particular model decisions from case
studies of attention weights and language model predictions.

5.1 Global Behavior
We can gain insight into the global behavior of an attention-equipped
LSTM from summary statistics such as the mean and standard de-
viation of attention weights over the course of a day’s predictions.
Figure 6 shows the average attention weights for each EM attention
model when predicting the last meaningful token (Success/Fail).
Error bars of one standard deviation are shown to illustrate the
variability of these weights.

Heatmaps of average attention weights for the four EM attention
models proposed in Section 3.3 are provided in Figures 7, 8, 9 and
10. Each time step in a sequence generates its own set of weights,
d(t ), over the previous hidden states. The larger the weight values
are the more relevant the associated hidden state is to the current
prediction. Note that the first input token is excluded from our
figures as it has no previous hidden states to attend over.

5.1.1 Fixed. Figure 7 shows the mean weights for the Fixed
attention which has a single fixed query that does not change with
the context at the current time step. The source user, destination
domain and source PC dominate the weight vectors, suggesting
that they are the most important fields to this model.
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Figure 8: Average Syntax attention weights.

5.1.2 Syntax. With the syntax model (Figure 8) each time step
gets its own set of query weights. This makes sense for word tok-
enized models that have position dependent syntax. As an example
of the model exhibiting intuitive behavior, when predicting the
source PC, the model is attending heavily over the source user.
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Figure 9: Average Semantic 1 attention weights.
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Figure 10: Average Semantic 2 attention weights.

5.1.3 Semantic. While the semantic attention mechanisms do
not assume a fixed syntactic structure, Figures 9 and 10 show that
both semantic attention variants learn reasonable attention strate-
gies on this fixed syntax data. Overall they produce similar attention
maps, attending heavily to source user and source PC. Semantic 1
also attends heavily to authentication type, while Semantic 2 also
deems destination user and destination PC to be important.

5.1.4 Tiered attention models. For the tiered model with a lower
forward-directional LSTM, the attention weights were nearly all 1.0
for the second to last hidden state. This state is making the decision
on success/fail, which conceptually makes sense with the goal of
top tier LSTM to pass the most relevant information forward for the
next event. Conversely, the tiered model with bidirectional LSTM
cells attended fully on the very first hidden state. As Figure 5 shows,
the backward LSTM ends with the first hidden state. Thus, the
bidirectional tiered model is collecting both the final hidden state
from the forward LSTM and the backward LSTM as its summary.
This suggests that the shortcut connections attention provides are
not needed for this model and task.

1 2 3 4 5 6 7 8 9 10
Prediction U22 DOM1 U66 DOM1 C1823 Kerberos ? Network LogOn Success <eos>

True Token x(t) <sos> U66 DOM1 U66 DOM1 C17693 C1966 NTLM Network LogOn Success
d(5) 0.12 0.16 0.40 0.33
d(6) 0.04 0.04 0.27 0.17 0.49
d(7) 0.02 0.02 0.16 0.11 0.29 0.40
d(8) 0.03 0.03 0.13 0.10 0.24 0.34 0.13

 Prediction h(t) U22 DOM1 U66 DOM1 C1823 Kerberos ? ...

Figure 11: Red teamword case studywith semantic attention.
See Figure 13 for description.

1 2 3 4 5 6 7 8 9 10
Prediction U22 DOM1 U22 DOM1 C506 C586 ? Network LogOff Success <eos>

True Token x(t) <sos> U22 DOM1 U22 DOM1 C586 C586 ? Network LogOff Success
d(5) 0.00 0.08 0.45 0.47
d(6) 0.07 0.07 0.27 0.29 0.29
d(7) 0.03 0.04 0.22 0.24 0.24 0.24
d(8) 0.04 0.04 0.17 0.19 0.19 0.18 0.19

 Prediction h(t) U22 DOM1 U22 DOM1 C506 C586 ? ...

Figure 12: Low anomaly word case study with semantic at-
tention. See Figure 13 for description.

5.2 Case Studies
We consider three case studies evaluated using semantic attention
models. Figures 11 and 13 depict two randomly sampled red events
evaluated with word and character semantic attention models, re-
spectively. For contrast, Figure 12 is a random non-anomalous event
evaluated with the semantic word model. Tokens where the pre-
dicted and true values diverge are of significant interest as they
contribute heavily to the anomaly score. We can disregard the low
probabilities when predicting the source user as it is impossible to
foresee what user will be associated with a random input sequence.

5.2.1 Word Tokenization. First consider the two word case stud-
ies. In both cases the source PC prediction is incorrect with low
confidence. In the low-anomaly case the model is able to correctly
predict the destination PC given the source PC token with very
high probability. However, the red team event predicted a token
associated with a different field for the destination PC. Examining
the weights we see that the red team event was attending heavily
over the hidden state taking the destination user domain as input
and predicting the source user. We note that DOM1 is a very com-
mon domain in the LANL dataset and that the attention is likely
considering the prediction that will be made from the embedding
which relates to the current input token. This misclassification ex-
poses a disadvantage in having a shared vocabulary for each field.
Individual vocabularies for each field could improve performance,
at the cost of minor feature engineering.

5.2.2 Character Tokenization. Finally, we examine model func-
tion when processing a character tokenized red team event. When
predicting the destination PC characters the hidden state associated
with the comma character right before the prediction of the source
PC has the largest associated weight. The second largest weight is
the comma character right before the destination PC field begins.
This may suggest that the model is learning positional information
from the comma characters, or that it is accumulating summary
vectors of the fields and “storing them” in the subsequent delim-
iter hidden state. Another point of interest is the attention weight
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 ...

Predicted U 2 2 2 @ D O M 1 , U 2 9 3 @ D O M 1 , C 5 0 9 6 , , C 4 5 7 7 9 K T L M , N e t w o r k , L o g O n , S u c c e s s <eos>
True Token x(t) <sos> U 2 9 3 @ D O M 1 , U 2 9 3 @ D O M 1 , C 1 7 6 9 3 , C 4 1 6 1 , N T L M , N e t w o r k , L o g O n , S u c c e s s

d(29) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1

d(30) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

d(31) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

d(32) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

d(33) 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

d(34) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0

d(35) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3

Prediction h(t) U 2 2 2 @ D O M 1 , U 2 9 3 @ D O M 1 , C 5 0 9 6 , , C 4 5 7 7 9 K ...

Figure 13: Red team case character study with Semantic attention. Coloring of the true token and predicted token rows is
based on the probability of the given character during prediction. Green represents a near 100% probability while red is near
0%. Attention weights d(t) correspond to the top row of predictions. For example, when predicting character character 34, K,
the model uses attention weights d(34). We provide a shifted copy of the predicted tokens at the bottom of the figure to align
with the hidden states being attended to. Best viewed in color.

vector d(34). It will substantially impact our anomaly score as our
model had almost 100% confidence that the next character would
be ‘K’, while the true token, ‘N’, has near 0% probability. Again we
see a heavy dependence on the delimiter hidden states.

6 CONCLUSIONS
In this paper we propose five attention mechanism implementa-
tions. The fixed and syntactic attention variants can be effective for
modeling sequences with a fixed structure while semantic variants
are more effective for input sequences that have varying lengths
and looser structures. While maintaining state-of-the-art perfor-
mance, the attention mechanisms provide information on both
feature importance and relational mapping between features. Addi-
tionally, architectural insights can be gleaned from the attention
applied, which may in the future lead to designing more effective
models. Other future work includes evaluating the system on dif-
ferent tasks and domains (e.g. detection of hardware failures from
computer logs). One could explore additional attention variants;
e.g., bidirectional models with attention may lead to further gains in
performance. Finally, equipping a lower tier model with the ability
to attend over upper tier hidden states, may effectively weight the
relevance of previous events in a user’s log sequence.
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