GRAPH LAPLACEANS AND THEIR APPLICATIONS

e Back to graphs - define graph Laplaceans
e Properties of graph Laplaceans
e Graph partitioning —

e Introduction to clustering

Graph Laplaceans - Definition

» “Laplace-type” matrices associated with general undirected graphs
— useful in many applications

» Given a graph G = (V, E) define

e A matrix W of weights w;; for each edge
e Assume W;j Z 0,, Wi; — 0, and W;; = Wy; V(’I,,j)

e The diagonal matrix D = diag(d;) with d; = Zj# wi;
» Corresponding graph Laplacean of G is:

L=D-W

» Gershgorin's theorem — L is positive semidefinite.
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»  Simplest case:
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Define the graph Laplacean for the

9 10 11 12
graph associated with the simple mesh
shown next. [use the simple weights of
0 or 1]. What is the difference with the 3 6 7 8
discretization of the Laplace operator for
case when mesh is the same as this graph? 4 2 3 4
Proposition:

(i) L is symmetric semi-positive definite.

(i) L is singular with 1 as a null vector.

(iii) If G is connected, then Null(L) = span{ 1}

(iv) If G has k > 1 connected components G1, Ga, - , G,
then the nullity of L is k and Null(L) is spanned by the vectors
20, j =1,..., k defined by:

G _ J1ifi € Gj
(2 )z_{Oif not.
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Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly w = 1 is
a null vector for L. The vector D~/24 is an eigenvector for the
matrix D~Y2L D=2 = I — D='/2W D~1/2 associated with the
smallest eigenvalue. It is also an eigenvector for D~Y/2W D~1/2
associated with the largest eigenvalue. By the Perron Frobenius
theorem this is a simple eigenvalue... (iv) Can be proved from the
fact that L can be written as a direct sum of the Laplacian matrices

forGl,--- ,Gk. .
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A few properties of graph Laplaceans

Define:  oriented incidence matrix H: (1)First orient the edges
i~ jintod — jorj — 4. (2) Rows of H indexed by vertices
of G. Columns indexed by edges. (3) For each (2, 7) in E, define

the corresponding column in H as \/w(%, 7)(e; — €;).

In previous ex- 1 0 0 0
ample (P. 11-3) orient ¢ — j -1 1 0 0
so that j > @ [lower triangular H=|0 0 1 0
matrix representation]. 0 0O O 1
Then matrix H is: — O -1 —1 -1

Property 1

Re-prove part (iv) of previous proposition by using this property.
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A few properties of graph Laplaceans

Strong relation between 7 L and local
distances between entries of @
» Let L = any matrixs.t. L = D —
W, with D = diag(d;) and

wi; > 0, di = Zwij
J#i

Property 2:  for any x € R™ :

1
x' Lz = > E wijlz; — x;]?
2]
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Property 3:  (generalization) for any Y € R3*™ .
1
Tr[YLY ] = > > wijllys — y;ll?
5,J

» Note: y; = j-th colunm of Y. Usually d < m. Each column
can represent a data sample.

Property 4:  For the particular L = I — % 117

XLX" = XX == n x Covariance matrix

Property 5: L is singular and admits the null vector
1 —ones(n,1)

9-8 — Glaplacians




Property 6:  (Graph partitioning) Consider situation when w;; €
{0, 1}. If = is a vector of signs (4=1) then

'Lz = 4 X (‘number of edge cuts')
edge-cut = pair (2, j) with x; # x;

» Consequence: Can be used to partition graphs

» Would like to minimize (L, ) subjecttox € {—1,1}" and
T

»  WII solve a relaxed form of this problem

What if we replace « by a vector of ones (representing one
partition) and zeros (representing the other)?

Let = be any vector and y = £+« 1 and L a graph Laplacean.
Compare (Lx, x) with (Ly, y).

e’ x = 0 [balanced sets| 910 - Glaplacians
» Consider any symmetric (real) matrix A with eigenvalues A1 <

y symmetric (real) : 1S (e . (La,a)
A < -« < A, and eigenvectors Uq, ¢, Uy min A e min vy

» Recall that: . (Az,x) .

: min ——— = )\
(Min reached for z = u;) zeR" (z,x)
» In addition: min (Az, z) -
(Min reached for @ = wus) zlu, (x,x) 2
» For a graph Laplacean u; = 1 = vector of all ones and

» ...vector Uy is called the Fiedler vector. It solves a relaxed form
of the problem -
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ze{-1,1}75 1e=0 (2, ) sexr; 1Ta=0 (@, )

» Define v = uy then lab = sign(v — med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean

2 Partition graph in 2 based
on Fielder vector

3 Partition largest subgraph
in two recursively ...

4 ... Until the desired num- ..
ber of partitions is reached

Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice
et al., Miller, Vavasis, Teng et al.]

3. Graph Theory techniques — multilevel,... [use graph, but no coor-
dinates]
e Currently best known technique is Metis (multi-level algorithm)

e Simplest idea: Recursive Graph Bisection; Nested dissection

(George & Liu, 1980; Liu 1992]

e Advantages: simplicity — no coordinates required
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Example of a graph theory approach

» Level Set Expansion Algorithm

» Given: p nodes ‘uniformly’ spread in the graph (roughly same 4

distance from one another).

» Method: Perform a level-set traversal (BFS) from each node

simultaneously.

» Best described for an example on a 15 X 15 five — point Finite

Difference grid.

» See [Goehring-Saad '94, See Cai-Saad '95]

» Approach also known under the name ‘bubble’ algorithm and

implemented in some packages [Party, DibaP] @
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Clustering

»  Problem: we are given n data items: x1, 2, -+ , x,. Would
like to ‘cluster’ them, i.e., group them so that each group or cluster
contains items that are similar in some sense.

» Example: materials » Example: Digits

Photovoltaic PCA - digits : 5 -- 7
Superhard
Superconductors 9
oy ’ . X B
&) Ferromagnetic 9 L. M
N « oo .
8 ° e e
A"& °
o e
Catalyti I e
- i atalytic p -6
Multi-ferroics Thermo-electric 33 . ~ 7

» Refer to each group as a ‘cluster’ or a ‘class’

»  ‘Unsupervised learning’
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What is Unsupervised learning?

“Unsupervised learning” : methods do not exploit labeled data
Example of digits: perform a 2-D projection

Images of same digit tend to cluster (more or less)

Such 2-D representations are popular for visualization

Can also try to find natural clusters in data, e.g., in materials

YYVYYVYY

Basic clusterning technique: K-means
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Example: Community Detection

» Communities modeled by an ‘affinity’ graph [e.g., 'user A sends
frequent e-mails to user B’
» Adjacency Graph represented by a sparse matrix

< Original
matrix

Goal: Find
ordering o)
blocks are
as dense as
possible —

» Use ‘blocking’ techniques for sparse matrices
» Advantage ot this viewpoint: need not know # of clusters.

[data: www-personal.umich.edu/~mejn/netdata/|
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Example of application | Data set from :

http://www-personal .umich.edu/~mejn/netdata/

» Network connecting bloggers of different political orientations
[2004 US presidentual election]

» ‘Communities’: liberal vs. conservative

» Graph: 1,490 vertices (blogs) : first 758: liberal, rest: conser-
vative.

» Edge: © — j : a citation between blogs ¢ and j

» Blocking algorithm (Density theshold=0.4): subgraphs [note:
density = |E|/|V|?]

» Smaller subgraph: conservative blogs, larger one: liberals
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