SPARSE DIRECT METHODS

- Building blocks for sparse direct solvers
- SPD case. Sparse Column Cholesky/
- Elimination Trees Symbolic factorization

Direct Sparse Matrix Methods

Problem addressed: Linear systems

$$Ax = b$$

- We will consider mostly Cholesky –
- > We will consider some implementation details and tricks used to develop efficient solvers

Basic principles:

- Separate computation of structure from rest [symbolic factorization
- Do as much work as possible statically
- Take advantage of clique formation (supernodes, mass-elimination).

8-2 Davis: Chap. 4 – Direct

Sparse Column Cholesky

For
$$j=1,\ldots,n$$
 Do:
$$l(j:n,j)=a(j:n,j)$$
 For $k=1,\ldots,j-1$ Do:
$$//\operatorname{cmod}(\mathsf{k},\mathsf{j}):$$
 $l_{j:n,j}:=l_{j:n,j}-l_{j,k}*l_{j:n,k}$ EndDo
$$//\operatorname{cdiv}(\mathsf{j}) \text{ [Scale]}$$
 $l_{j,j}=\sqrt{l_{j,j}}$ $l_{j+1:n,j}:=l_{j+1:n,j}/l_{jj}$ EndDo

Davis: Chap. 4 - Direct

The four essential stages of a solve

- 1. Reordering: $A \longrightarrow A := PAP^T$
- ➤ Preprocessing: uses graph [Min. deg, AMD, Nested Dissection]
- **2. Symbolic Factorization:** Build static data structure.
- Exploits 'elimination tree', uses graph only.
- Also: 'supernodes'
- 3. Numerical Factorization: Actual factorization $A = LL^T$
- ightharpoonup Pattern of $oldsymbol{L}$ is known. Uses static data structure. Exploits supernodes (blas3)
- **4. Triangular solves:** Solve Ly = b then $L^Tx = y$

Davis: Chap. 4 - Direct

ELIMINATION TREES

The notion of elimination tree

- ➤ Elimination trees are useful in many different ways [theory, symbolic factorization, etc..]
- ightharpoonup For a matrix whose graph is a tree, parent of column j < n is defined by

$$Parent(j)=i$$
, where $a_{ij}
eq 0$ and $i>j$

ightharpoonup For a general matrix matrix, consider $A=LL^T$, and $G^F=$ 'filled' graph = graph of $L+L^T$. Then

$$Parent(j) = \min(i) \; s.t. \; a_{ij}
eq 0 \; \mathsf{and} \; i{>}j$$

 \triangleright Defines a tree rooted at column n (Elimintion tree).

Davis: Chap. 4 – Direct

Example: Original matrix and Graph

Filled matrix+graph

Corresponding Elimination Tree

- Parent(i) = 'first nonzero entry in L(i+1:n,i)'
- lacksquare Parent(i) = min $\{j>i\mid j\ \in\ Adj_{G^F}(i)\}$

8-9 Davis: Chap. 4 – Direct

Where does the elimination tree come from?

> Answer in the form of an excercise.

Consider the elimination steps for the previous example. A directed edge means a row (column) modification. It shows the task dependencies. There are unnecessary dependencies. For example: $1 \to 5$ can be removed because it is subsumed by the path $1 \to 2 \to 5$.

To do: Remove all the redundant dependencies. What is the result?

10 _____ Davis: Chap. 4 – Direct

Facts about elimination trees

- ➤ Elimination Tree defines dependencies between columns.
- The root of a subtree cannot be used as pivot before any of its descendents is processed.
- ➤ Elimination tree depends on ordering;
- ➤ Can be used to define 'parallel' tasks.
- For parallelism: flat and wide trees \rightarrow good; thin and tall (e.g. of tridiagonal systems) \rightarrow Bad.
- ➤ For parallel executions, Nested Dissection gives better trees than Minimun Degree ordering.

Elim. tree depends on ordering (Not just the graph)

Example: 3×3 grid for 5-point stencil [natural ordering]

Davis: Chap. 4 – Direct

Davis: Chap. 4 – Direct

> Same example with nested dissection ordering

8-13 Davis: Chap. 4 – Direct

Properties

- The elimination tree is a spanning tree of the filled graph [a tree containing all vertices] obtained by removing edges.
- If $l_{ik} \neq 0$ then i is an ancestor of k in the tree In the previous example: follow the creation of the fill-in (6,8).

In particular: if $a_{ik} \neq 0, k < i$ then $i \rightsquigarrow k$

➤ Consequence: no fill-in between branches of the same subtree

Davis: Chap. 4 – Direct

Elimination trees and the pattern of L

 \triangleright It is easy to determine the sparsity pattern of L because the pattern of a given column is "inherited" by the ancestors in the tree.

Theorem: For i>j, $l_{ij}\neq 0$ iff j is an ancestor of some $k\in Adj_A(i)$ in the elimination tree.

In other words:

$$l_{ij}
eq 0, i > j \; ext{ iff } \; igg| egin{array}{c} \exists k \in Adj_A(i)s.t. \ j \leadsto k \end{array}$$

In theory: To construct the pattern of \boldsymbol{L} , go up the tree and accumulate the patterns of the columns. Initially L has the same pattern as $TRIL(\boldsymbol{A})$.

- ➤ However: Let us assume tree is not available ahead of time
- ➤ Solution: Parents can be obtained dynamically as the pattern is being built.
- ➤ This is the basis of symbolic factorization.

16 Davis: Chap. 4 – Direct

Notation:

- ightharpoonup nz(X) is the pattern of X (matrix or column, or row). A set of pairs (i,j)
- $igwedge tril(X) = ext{Lower triangular part of pattern [matlab notation]} \ \{(i,j) \in X \ | i>j \}$
- \triangleright Idea: dynamically create the list of nodes needed to update $L_{:,i}$.

ALGORITHM: 1. Symbolic factorization

- 1. Set: nz(L) = tril(nz(A)),
- 2. Set: $list(j) = \emptyset, j = 1, \cdots, n$
- 3. For j = 1:n
- 4. for $k \in list(j)$ do
- 5. $nz(L_{:,j}) := nz(L_{:,j}) \cup nz(L_{:,k})$
- 6. end
- 7. $p = \min\{i > j \mid L_{i,j} \neq 0\}$
- 8. $list(p) := list(p) \cup \{j\}$
- 9. End

Davis: Chap. 4 – Direct

Davis: Chap. 4 – Direct

Example: Consider the earlier example:

8-21 Davis: Chap. 4 – Direct