SPARSE DIRECT METHODS

e Building blocks for sparse direct solvers
e SPD case. Sparse Column Cholesky/

e Elimination Trees - Symbolic factorization

Direct Sparse Matrix Methods

Problem addressed: | Linear systems

Ax =1b

»  We will consider mostly Cholesky —

»  We will consider some implementation details and tricks used to
develop efficient solvers

Basic principles:

e Separate computation of structure from rest [symbolic factoriza-
tion]
e Do as much work as possible statically

e Take advantage of clique formation (supernodes, mass-elimination).
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Sparse Column Cholesky

Fory =1,...,n Do:
1(j < n,4) = a(j : m, )
Fork=1,...,7 — 1 Do:
// emod(k,j):
Lim,g 2= Ujmg — Uik * Ljn g
EndDo
// cdiv (j) [Scale]

A
g = Vi
lj—i—l:n,j = lj+1:n,j/ljj
EndDo
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The four essential stages of a solve

1. Reordering: |A — A := PAPT

» Preprocessing: uses graph [Min. deg, AMD, Nested Dissection]

2. Symbolic Factorization: | Build static data structure.

» Exploits "elimination tree’, uses graph only.

» Also: 'supernodes’

3. Numerical Factorization: | Actual factorization A = LLT

» Pattern of L is known. Uses static data structure. Exploits
supernodes (blas3)

4. Triangular solves: | Solve Ly = b then LTx = y
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ELIMINATION TREES

The notion of elimination tree

» Elimination trees are useful in many different ways [theory, sym-
bolic factorization, etc..]

» For a matrix whose graph is a tree, parent of column 3 < n is
defined by

Parent(j) = 1, where a;; # 0 and ¢ >j

» For a general matrix matrix, consider A = LLT and GF =
‘filled’ graph = graph of L + L. Then

Parent(j) = min(¢) s.t. a;; # 0 and ¢>j

» Defines a tree rooted at column m (Elimintion tree).
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Example: Original matrix and Graph

1 % * *
*

3 * *
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Filled matrix4graph

1 x *

* 2 H X [ |
3 * *

4 * x
* W % 5 N *
* ~ H 6 W N
* 7 x
* W % ~ B *x 8
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Corresponding Elimination Tree
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» Parent(i) = 'first nonzero entry in L(i+1:n,i)’
» Parent(i) =min {j >t |j € Adjer(?)}

8-9 Davis: Chap. 4 — Direct

Where does the elimination tree come from?

»  Answer in the form of an excercise.

Consider the elimination steps for the 3
previous example. A directed edge
means a row (column) modification. It
shows the task dependencies. There are 3

unnecessary dependencies. For example: i
1 — 5 can be removed because it is @:\ 6
subsumed by the path 1 — 2 — 5. )

To do:  Remove all the redundant dependencies.. What is the
result?
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Facts about elimination trees

» Elimination Tree defines dependencies between columns.

» The root of a subtree cannot be used as pivot before any of its
descendents is processed.

» Elimination tree depends on ordering;
» Can be used to define ‘parallel’ tasks.

» For parallelism: flat and wide trees — good; thin and tall (e.g.
of tridiagonal systems) — Bad.

» For parallel executions, Nested Dissection gives better trees than
Minimun Degree ordering.
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Elim. tree depends on ordering (Not just the graph)
3 X 3 grid for 5-point stencil [natural ordering]
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»  Same example with nested dissection ordering
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» The elimination tree is a spanning tree of the filled graph [a tree
containing all vertices] - obtained by removing edges.

» Ifl;r # Othentisan

. parent(k)
ancestor of k in the tree —

Y 2
In the previous exam- o>u parent (k) \
ple: follow the creation of parent (k)
the fill-in (6,8).

In particular: if a;, # 0,k < @ then 2 ~~ k

» Consequence: no fill-in between branches of the same subtree
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Elimination trees and the pattern of L

» |t is easy to determine the sparsity pattern of L because the
pattern of a given column is “inherited” by the ancestors in the tree.

Theorem:  For i > j, l;; # ey Parent(k)
0 iff 7 is an ancestor of some o=
k € Adja(?) in the elimina- iy
tion tree.

2
parent (k)

3
parent (k)

In other words:

3k € Adja(i)s.t.

pattern of L, go up the
tree and accumulate the

U nz(L:2)
patterns of the columns. U nalL)
Initially L has the same '

pattern as TRIL(A). \@

» However: Let us assume tree is not available ahead of time

nz(L:5) := nz(L:5)

In theory: To construct the é

» Solution: Parents can be obtained dynamically as the pattern is
being built.

» This is the basis of symbolic factorization.
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Notation :

» mnz(X) is the pattern of X (matrix or column, or row). A set

of pairs (2, 7)

» tril(X) = Lower triangular part of pattern [matlab notation]

ALGORITHM : 1. Symbolic factorization

1. Set: nz(L) = tril(nz(A)),
2. Set: list(j) = 0,5 =1,--- ,n
3 Forj=1:n

. C 4. fork € list(j) do
i € X |t>
{G3) i >} 5. nz(L. ;) := nz(L.;) Unz(L.;)
» |dea: dynamically create the list of nodes needed to update L. ;. 6. end
7. p=min{i>j| L # 0}
8. list(p) := list(p) U {5}
9. End
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