SPARSE DIRECT METHODS

¢ Building blocks for sparse direct solvers
e SPD case. Sparse Column Cholesky/

e Elimination Trees - Symbolic factorization



Dairect Sparse Matrix Methods
Problem addressed: | Linear systems

Ax =0b

»  We will consider mostly Cholesky —

»  We will consider some implementation details and tricks used to
develop efficient solvers

Basic principles: |

e Separate computation of structure from rest [symbolic factoriza-
tion]

e Do as much work as possible statically

e Take advantage of clique formation (supernodes, mass-elimination).
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Sparse Column Cholesky

Forg =1,...,n Do:
1(j : my§) = a(j : myJ)
Fork =1,...,7 — 1 Do:
// cmod(k,j):
Ljim,g 7= Ljingg — Lige * Ljin i
EndDo
// cdiv (j) [Scale] A

Lii = /1
Livin,g = Livin,g /1
EndDo
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The four essential stages of a solve
1. Reordering: |A — A :=PAPT

» Preprocessing: uses graph [Min. deg, AMD, Nested Dissection]

2. Symbolic Factorization: | Build static data structure.

» Exploits 'elimination tree’, uses graph only.

» Also: 'supernodes’

3. Numerical Factorization: |Actua| factorization A = LL7T

» Pattern of L is known. Uses static data structure. Exploits
supernodes (blas3)

4. Triangular solves: | Solve Ly = b then LTz = y
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The notion of elimination tree

» Elimination trees are useful in many different ways [theory, sym-
bolic factorization, etc..]

» For a matrix whose graph is a tree, parent of column 3 < n is
defined by

Parent(j) = ¢, where a;; 7# 0 and ¢ >j

» For a general matrix matrix, consider A = LL', and G¥ =
‘filled’ graph = graph of L + L. Then

Parent(j) = min(z) s.t. a;; # 0 and i>j

» Defines a tree rooted at column n (Elimintion tree).
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Example: Original matrix and Graph |
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Filled matrix+4graph |
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Corresponding Elimination Tree |

(@) ~7)
» Parent(i) = 'first nonzero entry in L(i+1:n,i)’
» Parent(i) =min {3 >1|j5 € Adjgr(2)}
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Where does the elimination tree come from?

» Answer in the form of an excercise.

Consider the elimination steps for the

3
previous example. A directed edge
means a row (column) modification. It
shows the task dependencies. There are 3

unnecessary dependencies. For example:
1 — 5 can be removed because it is
subsumed by the path 1 — 2 — 5.

To do: Remove all the redundant dependencies.. What is the
result?




Facts about elimination trees

» Elimination Tree defines dependencies between columns.

» The root of a subtree cannot be used as pivot before any of its
descendents is processed.

» Elimination tree depends on ordering;
» Can be used to define ‘parallel’ tasks.

»  For parallelism: flat and wide trees — good; thin and tall (e.g.
of tridiagonal systems) — Bad.

» For parallel executions, Nested Dissection gives better trees than
Minimun Degree ordering.




Elim. tree depends on ordering (Not just the graph)

Example: |3 X 3 grid for 5-point stencil [natural ordering]

)
++ T+ &
T 8 9 +++ +
R e R s SR
4/ 5 6 + Tt T
+ +++ +
______ Tt T
+ I+
bo23 o+ttt
-t ++




»  Same example with nested dissection ordering

1 7

Ll

19

3 -
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» The elimination tree is a spanning tree of the filled graph [a tree
containing all vertices| - obtained by removing edges.

» Ifl; # 0thentisan
ancestor of k in the tree

#)| In the previous exam-
ple: follow the creation of

the fill-in (6,8).

arent(k)
2
o9 parent (k)

3
e—>"u parent (k)

o — P

In particular: if a;p # 0,k < ¢ thenz ~ k

» Consequence: no fill-in between branches of the same subtree
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FElimination trees and the pattern of L

» |t is easy to determine the sparsity pattern of L because the
pattern of a given column is “inherited” by the ancestors in the tree.

Theorem:  For 1 > 3, l;; # o s Parent(k)
O iff 7 is an ancestor of some L
k € Adja(i) in the elimina- I

tion tree.

2
parent (k)

3
parent (k)

In other words:

3k € Adja(i)s.t.

lz-j;éO,z'>jifF ik



In theory: To construct the

pattern of L, go up the

tree and accumulate the nz(L:5) := nz(L:3)
U nz(L:2)

patterns of the columns.

L:
Initially L has the same U L) \@/{ %
pattern as TRIL(A). ®/{ \@

» However: Let us assume tree is not available ahead of time

@~

» Solution: Parents can be obtained dynamically as the pattern is
being built.

» This is the basis of symbolic factorization.
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Notation :

» nz(X) is the pattern of X (matrix or column, or row). A set
of pairs (2, 7)

» tril(X) = Lower triangular part of pattern [matlab notation]
1(3,7) € X |i >3}

» |dea: dynamically create the list of nodes needed to update L. ;.
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ALGORITHM : 1. Symbolic factorization

8-18

1. Set: nz(L) = tril(nz(A)),

2. Set: list(3) =0,5=1,---,n

3. Forg =1:n

4 fork € list(j) do

5 nz(L.;) :=nz(L.;) Unz(L.x)
0. end

/. p=min{t > 35| L;; # 0}

8. list(p) := list(p) U {7}

9. End

Davis: Chap. 4 — Direct




Example:

Consider

the earlier example:

List=empty
L={2,5,8},p=2

;
®

List= empty
L:={2,5,8} p=2

@——~
List={1
LI=S{5,{6,}8 @
p=95
®
@

List={2)



List= empty List= empty
L={2,58}, P =2 =268}, p=2 List={2,3}

¢ ‘ List={1) ¢é
Lst=(1} (2) pes 581 pos
L={5,6,8} List=empty ) List={4)
p=5 8 |L=(5,8)
®) p={5} @O——~@
List=empty
L={6,7
&—@ =




LISt empty List= empty

=258, P=2  [List=(2,3},L=(6,8}, p=6 =258, P =2 | ist-(2,3},L=(6,8},p=6
> \ 5
e ) tiSt{zeg}‘pty List={1} i ‘ \List=empty
ist= =(5, L={5 ,6,8} L:={5,8}
L={5,6,8} p=5 =
0=5 8 p= @ p=5
6 8
ist= List={4,5}
List={4,5
[ =aalo
i — = 2 L Ny
List=empty _
L={6,7) List=empty <4> <7>
p=6 L={6,7} p=6
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