REORDERINGS FOR FILL-REDUCTION

e Permutations and reorderings - graph interpretations

e Simple reorderings : Cuthill-Mc Kee, Reverse Cuthill Mc Kee
e Profile/envelope methods. Profile reduction.

e Multicoloring and independent sets [for iterative methods]

e Minimal degree ordering

e Nested Dissection

Reorderings and graphs

» Letw = {1, ,%,} a permutation

» Ap. = {aﬂ(i),j}i P matrix A with its 2-th row replaced
by row number 7 (%).

» A, . = matrix A with its j-th column replaced by column 7 (j).

» Define P; = I, = "Permutation matrix" — Then:

(1) Each row (column) of Py consists of zeros and exactly one “1"
(2) A,T, = P;A

B) PP, =1

(4) A*,,r = APT

7-2 Text: sec. 3.3 — orderings

Consider now:

A=A, .= P, APT

» Element in position (2,7) in matrix A’ is exactly element in
position (7 (%), 7 (7)) in A. (agj = Qr(i),n(j))

(t,J) € BEa <= (7(i),7(j)) € Ea

General picture :

i J ‘New labels’
@ @ '0ld labels’
7-3 Text: sec. 3.3 — orderings

A 9 X 9 'arrow’ matrix and its adjacency graph.

® EEEEEEEET
* ok
* *
* *

® 1 ® * *
* *
* *
® * *
) * *

Fill-in?

7-4 Text: sec. 3.3 — orderings

» Graph and matrix after swapping nodes 1 and 9:

C)

Fill-in?

7-5

%

*

L S S R . S SR S

Text: sec. 3.3 — orderings

¥ ¥ X X ¥ ¥ ¥ ¥ ¥

The Cuthill-McKee and its reverse orderings

» A class of reordering techniques which proceed by levels in the
graph.
» Related to Breadth First Search (BFS) traversal in graph theory.

» ldea of BFS is to visit the nodes by ‘levels’. Level 0 = level of
starting node.

» Start with a node, visit its neighbors, then the (unmarked)
neighbors of its neighbors, etc...

7-6 Text: sec. 3.3 — orderings

A B)) J
T T Tree Queue
A B, C
@ A B C.1.D
A, B, ID, E
— %) A B [D, E J, K
A B C I D E, J K G
\@/ A, B C I, D EJ K GHF
» Final traversal order:
|A,|B, C,|I, D, E,|J, K, G, H, F|
(@] i (q\] o
o o o o
3 o > >
— — — —

77

Text: sec. 3.3 — orderings

» Levels represent distances from the root
» Algorithm can be implemented by crossing levels 1,2, ...

» More common: Queue implementation

Algorithm BF S (G, v) — Queue implementation
e Initialize: Queue := {v}; Mark v; ptr = 1,
e While ptr < length(Queue) do

—head = Queue(ptr);

— ForEach Unmarked w € Adj(head):

* Mark w;
* Add w to Queue: Queue = {Queue, w};

—ptr + +;

7-8 Text: sec. 3.3 — orderings

function [p] = bfs(A,init)
%% BFS traversal. queue implementation
hth=—mmmmmmmmmmmm enqueue first node
p=[init];
n = size(A,1);
mask = zeros(n,1);
ngask(init) =1;

hfp———————————————————— main loop
for h=1:n
hoth—————m—mmmmmmmmm scan nodes in adj(p(h))
[ii, jj, rr] = find(A(C:,p(h)));
for v=1i’
if (mask(v)==0)
p = [p, vl ;
mask(v) = 1;
end
end
end
7-9 Text: sec. 3.3 — orderings

A few properties of Breadth-First-Search

» |If G is a connected undirected graph then each vertex will be
visited once; each edge will be inspected at least once

» Therefore, for a connected undirected graph,

The cost of BFS is O(|V'| + |E|)

» Distance = level number; » For each node v we have:

min dist(s,v) = level number(v) = depthr(v)

» Several reordering algorithms are based on variants of Breadth-
First-Search

7-10 Text: sec. 3.3 — orderings

Cuthill McKee ordering

Same as BFS except: Adj(head) always sorted by increasing
degree

Rule:

7-11

A C(3) B(4)

A, C B, F(2)

A C B F, D(3), E(4)
A C B F D, E

A C B F D E, G(2)

A C,B F,D,E |G

A C,B F D EG

when adding nodes to the queue list them in 1 deg.

Text: sec. 3.3 — orderings

Reverse Cuthill McKee ordering

» The Cuthill - Mc Kee ordering has a tendency to create small
arrow matrices (going the wrong way):

Origimal matrix CM ordering

. e
. e .
£ -, .] 200

. . oo
50+ !. M ., '.... e, f'.. 4

haat BN H
.. '0 *
6of 6of el 0% e 8 o3
. s,
I o0’
Bgee So gy 0 e o,
70 70r Ce s o e % o
. PO PN
0 10 20 30 40 0 10 20 30 40 50 60 70
nz =377 nz =377
7-12 Text: sec. 3.3 — orderings

» |dea: Take the reverse ordering

0.

RCM ordering

10(*

200 ** *

301

40t

50

60

701

20 30 40 50 60 70
nz =377

» Reverse Cuthill M Kee ordering (RCM).

7-13

Text: sec. 3.3 — orderings

Envelope/Profile methods

Many terms used for the same methods: Profile, Envelope, Skyline,

» Generalizes band methods
» Consider only the symmetric (in fact SPD) case
» Define bandwith of row #. (“i-th bandwidth of A):

Bi(A) = max;<i.a, 20|t —

7-14 Text: sec. 3.3 — orderings

Definition: Envelope of A is the set of all pairs (2, 5) such that
0 <t—73 < Bi(A). The quantity |[Env(A)| is called profile

of A.

Main result

Theorem: Let A = LLT the Cholesky factorization of A. Then

» An envelope / profile/ Skyline method is a method which treats
any entry a;;, with (¢,j) € Enwv(A) as nonzero.

7-15

The envelope is preserved by GE (no-pivoting)

Env(A) = Env(L + L7)

Text: sec. 3.3 — orderings

Matlab test: do the following

1. Generate A = Lap2D(64,64)

2. Compute R = chol(A)

3. show nnz(R)

4. Compute RCM permutation (symrcm)

5. Compute B = A(p,p)

6. spy(B)

7. compute R1 = chol(B)

8. Show nnz(R)

9. spy(R1)

7.16 Text: sec. 3.3 - orderings

(18) (©) (19) 1) 20)
Orderings for iterative methods: Multicoloring
» General technique that can be exploited in many different ways
to introduce parallelism — generally of order IN. ® 0 @) 0
- N N - N
» Constitutes one of the most successful techniques for introducing
vector computations for iterative methods..
» Want: assign colors so that no two adjacent nodes have the same (13) (4) (14) 5) (s
color.
Simple example: | Red-Black ordering.
W ay 2) 12) ©)
7-18 Text: sec. 3.3 — coloring

Corresponding matriz How to generalize Red-Black ordering?

" . i m Answer: | Multicoloring | & | independent sets
.]] - L] . [; . .
. L L A greedy multicoloring technique:
u H EE ©H
" . “u : -:: e Initially assign color number zero (uncolored) to every node.
= " e Choose an order in which to traverse the nodes.
.l_::.l_ .l_ e Scan all nodes in the chosen order and at every node %z do
H EE B |
moue " Color(i) = min{k # 0|k # Color(j),V 7 € Adj (i)}
H EHN |
H B]

» Observe: L-U solves (or SOR sweeps) in Gauss-Seidel will require Adj(i) = set of nearest neighbors of i = {k | a; # 0}.

only diagonal scalings + matrix-vector products with matrices of size

N/2.

7-19 Text: sec. 3.3 — coloring 7-20 Text: sec. 3.3 — coloring

7-21

o

o

Text: sec. 3.3 — coloring

Independent Sets

An independent set (IS) is a set of nodes that are not coupled by
an equation. The set is maximal if all other nodes in the graph are
coupled to a node of IS. If the unknowns of the IS are labeled first,
then the matrix will have the form:

= a

in which B is a diagonal matrix, and E, F', and C' are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every
node ¢ do: if ¢ is not colored color it Red and color all its neighbors
Black. Independent set: set of red nodes. Complexity: O(|E| +
V).

7-22 Text: sec. 3.3 — coloring

7-23

~i|

~l @

~i|

Text: sec. 3.3 — coloring

Show that the size of the independent set I is such that

1]
14 d;

where dj is the maximum degree of each vertex in I (not counting
self cycle).

» According to the above inequality what is a good (heuristic) order
in which to traverse the vertices in the greedy algorithm?

» Are there situations when the greedy alorithm for independent
sets yield the same sets as the multicoloring algorithm?

7-24 Text: sec. 3.3 — coloring

Orderings used in direct solution methods

» Two broad types of orderings used:

e Minimal degree ordering + many variations

o Nested dissection ordering + many variations
» Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node v
of smallest degree. After eliminating node v, update degrees and
repeat.

7-25 — order2

Minimal Degree Ordering

At any step ¢ of Gaussian elimination define for any candidate pivot
row j

Cost(j) = (nzc(j) — 1)(nz(3) — 1)

where nz.(j) = number of nonzero elements in column j of ‘active’
matrix, n2,(J) = number of nonzero elements in row j of ‘active’
matrix.

» Heuristic: fill-in at step j is < cost(7)

Strategy: [select pivot with minimal cost.|

>
» Local, greedy algorithm
>

Good results in practice.

7-26 — order2

Many tmprovements made over the years

e Alan George and Joseph W-H Liu, THE EVOLUTION OF THE
MINIMUM DEGREE ORDERING ALGORITHM, SIAM Review, vol
31 (1989), pp. 1-19.

Min. Deg. Algorithm Storage| Order.
(words)| time
Final min. degree 1,181 K| 43.90
Above w/o multiple elimn. 1,375 K| 57.38
Above w/o elimn. absorption 1,375 K| 56.00
Above w/o incompl. deg. update 1,375 K| 83.26
Above w/o indistiguishible nodes /1,308 K| 183.26
Above w/o mass-elimination 1,308 K |2289.44

» Results for a 180 X 180 9-point mesh problem

7-27 — order2

» Since this article, many important developments took place.

» In particular the idea of “Approximate Min. Degree” and and
“Approximate Min. Fill", see

e E. Rothberg and S. C. Eisenstat, NODE SELECTION STRATE-
GIES FOR BOTTOM-UP SPARSE MATRIX ORDERING, SIMAX,
vol. 19 (1998), pp. 682-695.

e Patrick R. Amestoy, Timothy A. Davis, and lain S. Duff. AN
APPROXIMATE MINIMUM DEGREE ORDERING ALGORITHM.
SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp.
886-905.

7-28 — order2

Practical Minimal degree algorithms

First Idea: | Use quotient graphs

* Avoids elimination graphs which are not economical
* Elimination creates cliques

* Represent each clique by a node termed an element (recall FEM
methods)

* No need to create fill-edges and elimination graph

* Still expensive: updating the degrees

7-29 — order2

Second idea: | Multiple Minimum degree

* Many nodes will have the same degree. Idea: eliminate many of
them simultaneously —

* Specifically eliminate independent set of nodes with same degree.

Third idea: | Approximate Minimum degree

* Degree updates are expensive —
* Goal: To save time.

* Approach: only compute an approximation (upper bound) to de-
grees.

* Details are complicated and can be found in Tim Davis' book

7-30 — order2

Nested Dissection Reordering (Alan George)

» Computer science ‘Divide-and-Conquer’ strategy.
» Best illustration: PDE finite difference grid.

» Easily described by using recursivity and by exploiting ‘separators’:
‘separate’ the graph in three parts, two of which have no coupling
between them. The 3rd set ('the separator’) has couplings with
vertices from both of the first 2 sets.

» Key idea: dissect the graph; take the subgraphs and dissect them
recursively.

» Nodes of separators always labeled last after those of the parents

7-31 — order2

Nested dissection ordering: illustration

=
|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,

777

| | I [I S [I

» For regular n X 1 meshes, can show: fill-in is of order n2log n
and computational cost of factorization is O (n?)

How does this compare with a standard band solver?

7-32 — order2

Nested dissection for a small mesh

First dissection
Original Grid

,,,,,,

Second Dissection Third Dissection

,,,,,,,,,,,,,,,,

7-34 — order2

Nested dissection: cost for a regular mesh

» In 2-D consider an nn X m problem, N = n?

» In 3-D consider an n X . X n problem, N = n3

2-D 3-D

space (fill) O(Nlog N) | O(N*/3)
time (flops) O(NN3/%) O(N?)

» Significant difference in complexity between 2-D and 3-D

7-35 — order2

Nested dissection and separators

» Nested dissection methods depend on finding a good graph
separator: V' = T7UUT>U S such that the removal of S leaves
T and 15 disconnected.

» Want: S small and T3 and T5 of about the same size.

» Simplest version of the graph partitioning problem.

A theoretical result:
If G is a planar graph with IN vertices, then there is a separator S
of size < v/ N such that |T1| < 2NN/3 and |T3| < 2IN/3.

In other words “Planar graphs have O(+/IN') separators”

» Many techniques for finding separators: Spectral, iterative swap-
ping (K-L), multilevel (Metis), BFS, ...

7-36 — order2

