Solution of eigenvalue problems

e Introduction — motivation

¢ Projection methods for eigenvalue problems

e Subspace iteration, The symmetric Lanczos algorithm
e Nonsymmetric Lanczos procedure;

e Implicit restarts

e Harmonic Ritz values, Jacobi-Davidson’s method

Background. Origins of Eigenvalue Problems

e Structural Engineering [Ku = AMwu] (Goal: frequency response)
e Electronic structure calculations [Schrédinger equation. .|
e Stability analysis [e.g., electrical networks, mechanical system,. ]|

e Bifurcation analysis [e.g., in fluid flow]

» Large eigenvalue problems in quantum chemistry use up biggest
portion of the time in supercomputer centers
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Background. New applications in data analytics

» Machine learning problems often require a (partial) Singular Value
Decomposition -

» Somewhat different issues in this case:
e Very large matrices, update the SVD

e Compute dominant singular values/vectors

e Many problems of approximating a matrix (or a tensor) by one of
lower rank (Dimension reduction, ...)

» But: Methods for computing SVD often based on those for
standard eigenvalue problems
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Background. The Problem (s)

» Standard eigenvalue problem:

Ax = \x

Often: A is symmetric real (or Hermitian complex)

» Generalized problem = Ax = ABzx Often: B is sym-
metric positive definite, A is symmetric or nonsymmetric

» Quadratic problems: (A+AB + A\2C)u =0

» Nonlinear eigenvalue "
problems (NEVP) Ao+ ABy + Z JiAMAiju=0

=1
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» General form of NEVP = A(A)xz = 0

» Nonlinear eigenvector problems:

[A+ AB + F(uj,ug,: -+ ,ug)]u =0

What to compute:

o A few A; 's with smallest or largest real parts;
e All \;'s in a certain region of C;
e A few of the dominant eigenvalues;

o All A\;'s (rare).
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Large eigenvalue problems in applications

» Some applications require the computation of a large number of
eigenvalues and vectors of very large matrices.

»  Density Functional Theory in electronic structure calculations:
‘ground states’

»  Excited states involve transitions and invariably lead to much
more complex computations. — Large matrices, *many* eigen-pairs
to compute
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Background: The main tools

Projection process:
(a) Build a ‘good’ subspace K = span(V);
(b) get approximate eigenpairs by a Rayleigh-Ritz process:
A u € K satisfy: (A—AlNu L K —
VHA - A)Vy =0

» X = Ritz value, u = Vy = Ritz vector

» Two common choices for K:
1) Power subspace K = span{A* Xy }; or span{P;(A) Xo};
2) Krylov subspace K = span{v, Av,--- , A¥"1v}
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Background. The main tools (cont)

Shift-and-invert:

» If we want eigenvalues near o, replace A by (A — oI)™ L.
power method: v; = Awv;_q/scaling replaced by

o (A—a'I)_lv]-_l
'UJ =

scaling

»  Works well for computing a few eigenvalues near o/
» Used in commercial package NASTRAN (for decades!)

» Requires factoring (A — oI) (or (A — o B) in generalized
case.) But convergence will be much faster.

» A solve each time - Factorization done once (ideally).
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Background. The main tools (cont)

Deflation:
»  Once eigenvectors converge remove them from the picture
Restarting Strategies :

» Restart projection process by using information gathered in pre-
vious steps

» ALL available methods use some combination of these ingredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-
invert (option).]
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Current state-of-the art in eigensolvers

» Eigenvalues at one end of the spectrum:
e Subspace iteration + filtering [e.g. FEAST, Cheb,...|

e Lanczos+variants (no restart, thick restart, implicit restart,
Davidson,..), e.g., ARPACK code, PRIMME.

e Block Algorithms [Block Lanczos, TraceMin, LOBPCG,
SlepSc,...]

e + Many others - more or less related to above

» ‘Interior’ eigenvalue problems (middle of spectrum):

e Combine shift-and-invert + Lanczos/block Lanczos. Used in,
e.g., NASTRAN

e Rational filtering [FEAST, Sakurai et al.,.. |
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Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto K orthogonal to L

» Given: Two subspaces K and L of same dimension.
> Find: X\, @ such that
A€ Cae Ky M—AallL

Two types of methods:
Orthogonal projection methods: situation when L = K.
Oblique projection methods: When L # K.
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Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to
eigenvectors of A.

Question: How to extract good approximations to eigenvalues/
eigenvectors from this subspace?

Answer: | Rayleigh Ritz process.

Let Q@ = [q1, ..., Qqm] an orthonormal basis of X. Then write an
approximation in the form w = Qu and obtain y by writing

QHA—-ADa =0

> QTAQy = Ay
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Procedure:

1. Obtain an orthonormal basis of X

2. Compute C = Q7 AQ (an m X m matrix)
3. Obtain Schur factorization of C, C = YRY ¥
4. Compute U = QY

Property: if X is (exactly) invariant, then procedure will yield
exact eigenvalues and eigenvectors.

Proof: Since X is invariant, (A — A)u = Qz for a certain z.
Q”Qz = 0 implies 2 = 0 and therefore (A — AI)u = 0.

» Can use this procedure in conjunction with the subspace obtained
from subspace iteration algorithm
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Subspace Iteration

»  Original idea: projection technique onto a subspace if the form
Y = AFX

» In practice: Replace A* by suitable polynomial [Chebyshev]

e Easy to implement (in symmetric case);

Advantages: e Easy to analyze;

Disadvantage: Slow.

» Often used with polynomial acceleration: A*X replaced by
Cr(A)X. Typically Cy = Chebyshev polynomial.
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Algorithm: Subspace lteration with Projection

1. Start: Choose an initial system of vectors X =
[€gy ..., @y and an initial polynomial Cs.

2. Iterate: Until convergence do:
(a) Compute Z = Cj(A) X o1a.
(b) Orthonormalize Z into Z.

(c) Compute B = ZHAZ and use the QR algorithm to
compute the Schur vectors Y = [y1,...,Ym] of B.

(d) Compute Xpery = ZY .
(e) Test for convergence. If satisfied stop. Else select a new
polynomial Cj, and continue.

THEOREM: Let Sy = span{xi,x3,...,Zn} and assume that
Sy is such that the vectors { Px;}i—1,... m are linearly independent
where P is the spectral projector associated with Ay, ..., Ay, Let
P the orthogonal projector onto the subspace Sy, = span{Xy}.
Then for each eigenvector u; of A, ¢ = 1,...,m, there exists a
unique vector s; in the subspace Sy such that Ps; = wu,;. Moreover,
the following inequality is satisfied

)\m-i-l
Ai

k
I = Pl < s — sille (|22 + ) s ()

where €y, tends to zero as k tends to infinity.
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Krylov subspace methods

Principle: Projection methods on Krylov subspaces, i.e., on

K, (A,v,) = span{vy, Avy,--- , A" 1oy}

e probably the most important class of projection methods [for linear
systems and for eigenvalue problems]

e many variants exist depending on the subspace L.

Properties of K,,,. Let u = deg. of minimal polynom. of v. Then,

e K,, = {p(A)v|p = polynomial of degree < m — 1}
e K,, = K, for all m > p. Moreover, K, is invariant under A.
edim(K,,) = miff u > m.
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Arnoldi’s Algorithm

» Goal: to compute an orthogonal basis of K,,.

» Input: Initial vector vy, with ||v||]2 = 1 and m.

ALGORITHM : 1. Arnoldi's procedure

Forj =1,...,m do
Compute w := Avj

T (b= w0
Fori=1,...,7, do w = w — h; v;
hjry = llwllz; vjta = w/hj

End
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Result of Arnoldi’s algorithm

Let

o
3
I

H,=H,(1:m,1:m)

8 8 8 &
88 8 8 8
888888

1. V,, = [v1, V2, ..., U] orthonormal basis of K,,.
2. AVm == m—}-lﬁm - VmHm + hm—i—l,mvm—}-leﬁ
3. VT:";AVm = H,, = H,,— last row.
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Appliaction to eigenvalue problems

» Write approximate eigenvector as u = V,,,y + Galerkin condi-
tion

(A=ADV,y L Ky = VEA - ADV,y =0
» Approximate eigenvalues are eigenvalues of H,,
Hmyj = Ajy;
Associated approximate eigenvectors are

’&j = mej

Typically a few of the outermost eigenvalues will converge first.
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Restarted Arnolds

In practice: Memory requirement of algorithm implies restarting is
necessary

» Restarted Arnoldi for computing rightmost eigenpair:

ALGORITHM : 2. Restarted Arnoldi

. Start: Choose an initial vector v1 and a dimension m.

. Iterate: Perform m steps of Arnoldi’s algorithm.

1
2
3. Restart: Compute the approximate eigenvector uﬁ’")
4
5

associated with the rightmost eigenvalue )\gm).

If satistied stop, else set v1 = ugm) and goto 2.
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Small Markov Chain matrix [ Mark(10) , dimension = 55]. Restarted
Arnoldi procedure for computing the eigenvector associated with the
eigenvalue with algebraically largest real part. We use m = 10.

m R(N) (M) |Res. Norm
10|0.9987435899D+00| 0.0 | 0.246D-01
20/0.9999523324D+00| 0.0 | 0.144D-02
30/0.1000000368D+01| 0.0 | 0.221D-04
40/0.1000000025D+01| 0.0 | 0.508D-06
50/0.9999999996D+00| 0.0 | 0.138D-07
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Restarted Arnoldi (cont.)

» Can be generalized to more than *one* eigenvector :
(new) _ N~ (m)
new m
Uy = Z pit;
i=1

» However: often does not work well — (hard to find good coeffi-
cients p;'s)

» Alternative : compute eigenvectors (actually Schur vectors) one
at a time.

» Implicit deflation.
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» \Very useful in practice.

» Different forms: locking (subspace iteration), selective orthogo-
nalization (Lanczos), Schur deflation, ...

A little background | Consider Schur canonical form

A =URUH

where U is a (complex) upper triangular matrix.
» Vector columns uq, ..., u, called Schur vectors.

» Note: Schur vectors depend on each other, and on the order of
the eigenvalues

16-24 - eigl




Wiedlandt Deflation: Assume we have computed a right eigenpair
A1, uy. Wielandt deflation considers eigenvalues of

A= A — ocuol

Note:
A(Al) = {)\1 — 0, Az, o 7>\n}

Wielandt deflation preserves u; as an eigenvector as well all the left
eigenvectors not associated with A;.

» An interesting choice for v is to take simply v = wuq. In this
case Wielandt deflation preserves Schur vectors as well.

» Can apply above procedure successively.
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ALGORITHM : 3. Explicit Deflation

. AQ - A
Fory =0...p—1 Do:
Compute a dominant eigenvector of A;
Define Aj-i-l = Aj — a'jujuJH
End

GLA W

» Computed uq, us., .. form a set of Schur vectors for A.

» Alternative: implicit deflation (within a procedure such as Arnoldi).
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Deflated Arnold:

»  When first eigenvector converges, put it in 1st column of V,,, =
[v1, V2, ...y U], Arnoldi will now start at column 2, orthogonaling
still against vy, ..., v; at step j.

» Accumulate each new converged eigenvector in columns 2, 3, ...
[locked’ set of eigenvectors.]

active
Thus, for k = 2: Vm — ['Ul, ’Ug, 533 D) 'Um]

Locked

»  Similar techniques in Subspace iteration [G. Stewart’s SRRIT]

Matrix Mark(10) — small Markov chain matrix (IN =

55).

» First eigenpair by iterative Arnoldi with m = 10.

m Re(N) Im () |Res. Norm
10/0.9987435899D+00| 0.0 |0.246D-01
2010.9999523324D+00| 0.0 0.144D-02
30/0.1000000368D+01| 0.0 |0.221D-04
40/0.1000000025D+01| 0.0 0.508D-06
50/0.9999999996D+00, 0.0 | 0.138D-07

16-28 - eigl




» Computing the next 2 eigenvalues of Mark(10).

Hermatian case: The Lanczos Algorithm

Eig.|[Mat-Vec's| Re(A) |Im(A) Res. Norm . .
» TheH | -
> 6010.9370500474 0.0 | 0.870D-03 e Hessenberg matrix becomes tridiagona
69 0.9371549617| 0.0 | 0.175D-04 A=A" and VHAV,=H, — H,=HY
7810.9371501442| 0.0 0.313D-06
87/0.9371501564| 0.0 0.490D-08 »  We can write
3 96|0.8112247133, 0.0 0.210D-02 o 3 y
104/0.8097553450 0.0 | 0.538D-03 [31 o 3
112/0.8096419483| 0.0 | 0.874D-04 2 ﬂ2 a3 3
: : : : Hm — 3 3 4 (2)
15210.8095717167, 0.0 0.444D-07
Bm Oam
» Consequence: three term recurrence
Bj+1vj41 = Avj — a;v; — Bvj
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ALGORITHM : 4. Lanczos

1. Choose vy of norm unity. Set 31 = 0,v9 = 0

3.

2. Forg =1,2,...,m Do:
w; = A'vj — ijj_l
a; = (wj, vj)
Ww; ‘= Ww; — Uy

4
5.
6.
/
8.

» In theory v;'s defined by 3-term recurrence are orthogonal.

Bj+1 = ||wj||2. If Bj41 = O then Stop
Vi1 = wj/ Bt

EndDo

Hermitian matrix + Arnoldi — Hermitian Lanczos

» However: in practice severe loss of orthogonality;
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Lanczos with reorthogonalization

Observation [Paige, 1981]: Loss of orthogonality starts suddenly,

when the first eigenpair converges.

It indicates loss of linear

indedependence of the v;s. When orthogonality is lost, then several
copies of the same eigenvalue start appearing.

Full reorthogonalization — reorthogonalize v against all previous
v;'s every time.

Partial reorthogonalization — reorthogonalize v;1 against all pre-
vious v;'s only when needed [Parlett & Simon]

Selective reorthogonalization — reorthogonalize v;1 against com-
puted eigenvectors [Parlett & Scott]

No reorthogonalization — Do not reorthogonalize - but take mea-

sures to deal with 'spurious’ eigenvalues. [Cullum & Willoughby]
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Partial reorthogonalization

» Partial reorthogonalization: reorthogonalize only when deemed
necessary.

» Main question is when?
» Uses an inexpensive recurrence relation

»  Work done in the 80’s [Parlett, Simon, and co-workers] + more
recent work [Larsen, '98]

» Package: PROPACK [Larsen] V 1: 2001, most recent: V 2.1
(Apr. 05)

» Often, need for reorthogonalization not too strong
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The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly

A A< S A

»  Orthogonal projection method onto K,;

» To derive error bounds, use the Courant characterization

- ) (Au,u)  (Aty,u,)

A = -
YT wEK, uzo (u, u) (w1, @1)
- Au,u Au;,u;
5o o Aww (A0,0)
{ u € ~K, u~9é0 (u7 u) (u]7 u])
w Lty g
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»  Bounds for Ay easy to find — similar to linear systems.

» Ritz values approximate eigenvalues of A inside out:
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A-priori error bounds

Theorem [Kaniel, 1966]:

tan Z(’Ul, Ul) :| 2
Trn—1(1 4 271)

and Z(v1, u1) = angle between v; and u;.

OSAgm)_AIS(AN—Al){

A=A .
AN—A2!

where v, =

+ results for other eigenvalues. [Kaniel, Paige, YS]

Theorem
m) tan Z(vi, u;) 2
b T—i(1 4 27;)

(m)
Air1—N; n(m) _ o )‘jm —AN
AN—Ait1 7 e YA A§m)—Ai

0<A™ — X < (Av— A1) |k

where v; =
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The Lanczos biorthogonalization (A” # A)

ALGORITHM : 5. Lanczos bi-orthogonalization

1. Choose two vectors vy, wy such that (v, w;) = 1.
2. Setﬁlzéle,woszEO
3 Forg=1,2,...,m Do:

4. ;= (Avj,wj)
5. ,ﬁj+1 = AUj — Qv — Bj'vj_l
6. ’lf)j_|_1 = AT'wj — Q;w; — (Sj'wj_l
7. iz = |(Bj41, Wjs1) |2 If 811 = 0 Stop
8. Bj+1= (D541, Wj11)/8j1
9. wjt1 = Wi11/Bjn
10 vjp1 = 931/
11. EndDo
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» Builds a pair of biorthogonal bases for the two subspaces

Km(A,v)) and K,,(AH, w)
» Many choices for ;41,341 in lines 7 and 8. Only constraint:
8j+1Bj+1 = (Vj41, Wj41)

Let -~ -

(83] ,32

02 o B3

6m—1 am—1 /Bm
Om  Qm

» v; € Kn(A,v1) and w; € K (AT, wy).
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If the algorithm does not break down before step m, then
the vectors v;,2 = 1,...,m, and w;,3 = 1,...,m,
are biorthogonal, i.e.,
('vj,wi) :51']' 1 S ’i, j S m .

Moreover, {v;}i=1,2,..m is a basis of ICp,(A,v1) and
{wi}i=1,2,..,m is a basis of Km(AH  wy) and

AVm = VoI + 5m+1_'vm+1eg,

AHWm = WanI:LI —|— ﬁm+1wm+leg,

wHAv, =T, .

16-39 - eigl

> If0;,y;, z; are, respectively an eigenvalue of T;,,, with associated
right and left eigenvectors y; and z; respectively, then corresponding
approximations for A are

Ritz value Right Ritz vector | Left Ritz vector
Oj mej Wij

[Note: terminology is abused slightly - Ritz values and vectors nor-
mally refer to Hermitian cases.|
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Advantages and disadvantages

Advantages:

» Nice three-term recurrence — requires little storage in theory.

» Computes left and a right eigenvectors at the same time
Disadvantages:

»  Algorithm can break down or nearly break down.
»  Convergence not too well understood. Erratic behavior

» Not easy to take advantage of the tridiagonal form of T;,,.
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Look-ahead Lanczos

Algorithm breaks down when:

(D41, Wj11) =0

Three distinct situations.

»  ‘lucky breakdown’ when either ©; 1 or W;; is zero. In this case,
eigenvalues of T, are eigenvalues of A.

»  (Djy1,Wjq1) = 0 but of Dj1q1 # 0, Wy # 0 — serious
breakdown. Often possible to bypass the step (+ a few more) and
continue the algorithm. If this is not possible then we get an ...

» ... Incurable break-down. [very rare]
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Look-ahead Lanczos algorithms | deal with the second case.

See Parlett 80, Freund and Nachtigal '90.... Main idea: when
break-down occurs, skip the computation of v, w;11 and define
Vjt2, Wjt2 from vj, w;. For example by orthogonalizing A%v; ...
Can define w1 somewhat arbitrarily as v;11 = Awv;. Similarly for

et

» Drawbacks: (1) projected problem no longer tridiagonal (2)
difficult to know what constitutes near-breakdown.
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