
Solution of eigenvalue problems

• Introduction – motivation

• Projection methods for eigenvalue problems

• Subspace iteration, The symmetric Lanczos algorithm

• Nonsymmetric Lanczos procedure;

• Implicit restarts

• Harmonic Ritz values, Jacobi-Davidson’s method

Background. Origins of Eigenvalue Problems

• Structural Engineering [Ku = λMu] (Goal: frequency response)

• Electronic structure calculations [Schrödinger equation..]

• Stability analysis [e.g., electrical networks, mechanical system,..]

• Bifurcation analysis [e.g., in fluid flow]

ä Large eigenvalue problems in quantum chemistry use up biggest
portion of the time in supercomputer centers

16-2 – eigBackg

Background. New applications in data analytics

ä Machine learning problems often require a (partial) Singular Value
Decomposition -

ä Somewhat different issues in this case:

• Very large matrices, update the SVD

• Compute dominant singular values/vectors

• Many problems of approximating a matrix (or a tensor) by one of
lower rank (Dimension reduction, ...)

ä But: Methods for computing SVD often based on those for
standard eigenvalue problems

16-3 – eigBackg

Background. The Problem (s)

ä Standard eigenvalue problem:

Ax = λx

Often: A is symmetric real (or Hermitian complex)

ä Generalized problem Ax = λBx Often: B is sym-
metric positive definite, A is symmetric or nonsymmetric

ä Quadratic problems: (A+ λB + λ2C)u = 0

ä Nonlinear eigenvalue
problems (NEVP)

[
A0 + λB0 +

n∑
i=1

fi(λ)Ai

]
u = 0

16-4 – eigBackg

ä General form of NEVP A(λ)x = 0

ä Nonlinear eigenvector problems:

[A+ λB + F (u1, u2, · · · , uk)]u = 0

What to compute:

• A few λi ’s with smallest or largest real parts;

• All λi’s in a certain region of C;

• A few of the dominant eigenvalues;

• All λi’s (rare).

16-5 – eigBackg

Large eigenvalue problems in applications

ä Some applications require the computation of a large number of
eigenvalues and vectors of very large matrices.

ä Density Functional Theory in electronic structure calculations:
‘ground states’

ä Excited states involve transitions and invariably lead to much
more complex computations. → Large matrices, *many* eigen-pairs
to compute

16-6 – eigBackg

Background: The main tools

Projection process:

(a) Build a ‘good’ subspace K = span(V);

(b) get approximate eigenpairs by a Rayleigh-Ritz process:
λ̃, ũ ∈ K satisfy: (A− λ̃I)ũ ⊥ K −→

V H(A− λ̃I)V y = 0

ä λ̃ = Ritz value, ũ = V y = Ritz vector

ä Two common choices for K:
1) Power subspaceK = span{AkX0}; or span{Pk(A)X0};
2) Krylov subspace K = span{v,Av, · · · , Ak−1v}

16-7 – eigBackg

Background. The main tools (cont)

Shift-and-invert:

ä If we want eigenvalues near σ, replace A by (A− σI)−1.

Example: power method: vj = Avj−1/scaling replaced by

vj =
(A−σI)−1vj−1

scaling

ä Works well for computing a few eigenvalues near σ/

ä Used in commercial package NASTRAN (for decades!)

ä Requires factoring (A − σI) (or (A − σB) in generalized
case.) But convergence will be much faster.

ä A solve each time - Factorization done once (ideally).
16-8 – eigBackg

Background. The main tools (cont)

Deflation:

ä Once eigenvectors converge remove them from the picture

Restarting Strategies :

ä Restart projection process by using information gathered in pre-
vious steps

ä ALL available methods use some combination of these ingredients.

[e.g. ARPACK: Arnoldi/Lanczos + ‘implicit restarts’ + shift-and-
invert (option).]

16-9 – eigBackg

Current state-of-the art in eigensolvers

ä Eigenvalues at one end of the spectrum:

• Subspace iteration + filtering [e.g. FEAST, Cheb,...]

• Lanczos+variants (no restart, thick restart, implicit restart,
Davidson,..), e.g., ARPACK code, PRIMME.

• Block Algorithms [Block Lanczos, TraceMin, LOBPCG,
SlepSc,...]

• + Many others - more or less related to above

ä ‘Interior’ eigenvalue problems (middle of spectrum):

• Combine shift-and-invert + Lanczos/block Lanczos. Used in,
e.g., NASTRAN

• Rational filtering [FEAST, Sakurai et al.,..]

16-10 – eigBackg

Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto K orthogonal to L

ä Given: Two subspaces K and L of same dimension.

ä Find: λ̃, ũ such that

λ̃ ∈ C, ũ ∈ K; (λ̃I −A)ũ ⊥ L

Two types of methods:

Orthogonal projection methods: situation when L = K.

Oblique projection methods: When L 6= K.

16-11 – eig1

Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to
eigenvectors of A.
Question: How to extract good approximations to eigenvalues/
eigenvectors from this subspace?

Answer: Rayleigh Ritz process.

Let Q = [q1, . . . , qm] an orthonormal basis of X. Then write an
approximation in the form ũ = Qy and obtain y by writing

QH(A− λ̃I)ũ = 0

ä QHAQy = λ̃y

16-12 – eig1

Procedure:
1. Obtain an orthonormal basis of X
2. Compute C = QHAQ (an m×m matrix)
3. Obtain Schur factorization of C, C = Y RY H

4. Compute Ũ = QY

Property: if X is (exactly) invariant, then procedure will yield
exact eigenvalues and eigenvectors.

Proof: Since X is invariant, (A − λ̃I)u = Qz for a certain z.
QHQz = 0 implies z = 0 and therefore (A− λ̃I)u = 0.

ä Can use this procedure in conjunction with the subspace obtained
from subspace iteration algorithm

16-13 – eig1

Subspace Iteration

ä Original idea: projection technique onto a subspace if the form

Y = AkX

ä In practice: Replace Ak by suitable polynomial [Chebyshev]

Advantages:
• Easy to implement (in symmetric case);
• Easy to analyze;

Disadvantage: Slow.

ä Often used with polynomial acceleration: AkX replaced by
Ck(A)X. Typically Ck = Chebyshev polynomial.

16-14 – eig1

Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X =
[x0, . . . , xm] and an initial polynomial Ck.

2. Iterate: Until convergence do:

(a) Compute Ẑ = Ck(A)Xold.

(b) Orthonormalize Ẑ into Z.

(c) Compute B = ZHAZ and use the QR algorithm to
compute the Schur vectors Y = [y1, . . . , ym] of B.

(d) Compute Xnew = ZY .

(e) Test for convergence. If satisfied stop. Else select a new
polynomial C′k′ and continue.

THEOREM: Let S0 = span{x1, x2, . . . , xm} and assume that
S0 is such that the vectors {Pxi}i=1,...,m are linearly independent
where P is the spectral projector associated with λ1, . . . , λm. Let
Pk the orthogonal projector onto the subspace Sk = span{Xk}.
Then for each eigenvector ui of A, i = 1, . . . ,m, there exists a
unique vector si in the subspace S0 such that Psi = ui. Moreover,
the following inequality is satisfied

‖(I − Pk)ui‖2 ≤ ‖ui − si‖2

(∣∣∣∣λm+1

λi

∣∣∣∣+ εk

)k
, (1)

where εk tends to zero as k tends to infinity.

16-16 – eig1

Krylov subspace methods

Principle: Projection methods on Krylov subspaces, i.e., on

Km(A, v1) = span{v1, Av1, · · · , Am−1v1}

• probably the most important class of projection methods [for linear
systems and for eigenvalue problems]

• many variants exist depending on the subspace L.

Properties of Km. Let µ = deg. of minimal polynom. of v. Then,

•Km = {p(A)v|p = polynomial of degree ≤ m− 1}
•Km = Kµ for all m ≥ µ. Moreover, Kµ is invariant under A.

• dim(Km) = m iff µ ≥ m.

16-17 – eig1

Arnoldi’s Algorithm

ä Goal: to compute an orthogonal basis of Km.

ä Input: Initial vector v1, with ‖v1‖2 = 1 and m.

ALGORITHM : 1 Arnoldi’s procedure

For j = 1, ...,m do
Compute w := Avj

For i = 1, . . . , j, do

{
hi,j := (w, vi)
w := w − hi,jvi

hj+1,j = ‖w‖2; vj+1 = w/hj+1,j

End

16-18 – eig1

Result of Arnoldi’s algorithm

Let

Hm =



x x x x x
x x x x x

x x x x
x x x

x x
x


; Hm = Hm(1 : m, 1 : m)

1. Vm = [v1, v2, ..., vm] orthonormal basis of Km.

2. AVm = Vm+1Hm = VmHm + hm+1,mvm+1e
T
m

3. V T
mAVm = Hm ≡ Hm− last row.

16-19 – eig1

Appliaction to eigenvalue problems

ä Write approximate eigenvector as ũ = Vmy + Galerkin condi-
tion

(A− λ̃I)Vmy ⊥ Km→ V H
m (A− λ̃I)Vmy = 0

ä Approximate eigenvalues are eigenvalues of Hm

Hmyj = λ̃jyj

Associated approximate eigenvectors are

ũj = Vmyj

Typically a few of the outermost eigenvalues will converge first.

16-20 – eig1

Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is
necessary

ä Restarted Arnoldi for computing rightmost eigenpair:

ALGORITHM : 2 Restarted Arnoldi

1. Start: Choose an initial vector v1 and a dimension m.
2. Iterate: Perform m steps of Arnoldi’s algorithm.

3. Restart: Compute the approximate eigenvector u
(m)
1

4. associated with the rightmost eigenvalue λ
(m)
1 .

5. If satisfied stop, else set v1 ≡ u(m)
1 and goto 2.

16-21 – eig1

Example:

Small Markov Chain matrix [Mark(10) , dimension = 55]. Restarted
Arnoldi procedure for computing the eigenvector associated with the
eigenvalue with algebraically largest real part. We use m = 10.

m <(λ) =(λ) Res. Norm
10 0.9987435899D+00 0.0 0.246D-01
20 0.9999523324D+00 0.0 0.144D-02
30 0.1000000368D+01 0.0 0.221D-04
40 0.1000000025D+01 0.0 0.508D-06
50 0.9999999996D+00 0.0 0.138D-07

16-22 – eig1

Restarted Arnoldi (cont.)

ä Can be generalized to more than *one* eigenvector :

v
(new)
1 =

p∑
i=1

ρiu
(m)
i

ä However: often does not work well – (hard to find good coeffi-
cients ρi’s)

ä Alternative : compute eigenvectors (actually Schur vectors) one
at a time.

ä Implicit deflation.

16-23 – eig1

Deflation

ä Very useful in practice.

ä Different forms: locking (subspace iteration), selective orthogo-
nalization (Lanczos), Schur deflation, ...

A little background Consider Schur canonical form

A = URUH

where U is a (complex) upper triangular matrix.

ä Vector columns u1, . . . , un called Schur vectors.

ä Note: Schur vectors depend on each other, and on the order of
the eigenvalues

16-24 – eig1

Wiedlandt Deflation: Assume we have computed a right eigenpair
λ1, u1. Wielandt deflation considers eigenvalues of

A1 = A− σu1v
H

Note:
Λ(A1) = {λ1 − σ, λ2, . . . , λn}

Wielandt deflation preserves u1 as an eigenvector as well all the left
eigenvectors not associated with λ1.

ä An interesting choice for v is to take simply v = u1. In this
case Wielandt deflation preserves Schur vectors as well.

ä Can apply above procedure successively.

16-25 – eig1

ALGORITHM : 3 Explicit Deflation

1. A0 = A
2. For j = 0 . . . µ− 1 Do:
3. Compute a dominant eigenvector of Aj

4. Define Aj+1 = Aj − σjujuHj
5. End

ä Computed u1, u2., .. form a set of Schur vectors for A.

ä Alternative: implicit deflation (within a procedure such as Arnoldi).

16-26 – eig1

Deflated Arnoldi

ä When first eigenvector converges, put it in 1st column of Vm =
[v1, v2, . . . , vm]. Arnoldi will now start at column 2, orthogonaling
still against v1, ..., vj at step j.

ä Accumulate each new converged eigenvector in columns 2, 3, ...
[‘locked’ set of eigenvectors.]

Thus, for k = 2: Vm =

[
v1, v2︸ ︷︷ ︸
Locked

,
active︷ ︸︸ ︷

v3, . . . , vm

]

Hm =



∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗



ä Similar techniques in Subspace iteration [G. Stewart’s SRRIT]

Example: Matrix Mark(10) – small Markov chain matrix (N =
55).

ä First eigenpair by iterative Arnoldi with m = 10.

m <e(λ) =m(λ) Res. Norm
10 0.9987435899D+00 0.0 0.246D-01
20 0.9999523324D+00 0.0 0.144D-02
30 0.1000000368D+01 0.0 0.221D-04
40 0.1000000025D+01 0.0 0.508D-06
50 0.9999999996D+00 0.0 0.138D-07

16-28 – eig1

ä Computing the next 2 eigenvalues of Mark(10).

Eig. Mat-Vec’s <e(λ) =m(λ) Res. Norm
2 60 0.9370509474 0.0 0.870D-03

69 0.9371549617 0.0 0.175D-04
78 0.9371501442 0.0 0.313D-06
87 0.9371501564 0.0 0.490D-08

3 96 0.8112247133 0.0 0.210D-02
104 0.8097553450 0.0 0.538D-03
112 0.8096419483 0.0 0.874D-04

...

...
152 0.8095717167 0.0 0.444D-07

16-29 – eig1

Hermitian case: The Lanczos Algorithm

ä The Hessenberg matrix becomes tridiagonal :

A = AH and V H
m AVm = Hm → Hm = HH

m

ä We can write

Hm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .
. . .

βm αm


(2)

ä Consequence: three term recurrence

βj+1vj+1 = Avj − αjvj − βjvj−1

16-30 – eig1

ALGORITHM : 4 Lanczos

1. Choose v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0
2. For j = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1

4. αj := (wj, vj)
5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo

Hermitian matrix + Arnoldi→ Hermitian Lanczos

ä In theory vi’s defined by 3-term recurrence are orthogonal.

ä However: in practice severe loss of orthogonality;

16-31 – eig1

Lanczos with reorthogonalization

Observation [Paige, 1981]: Loss of orthogonality starts suddenly,
when the first eigenpair converges. It indicates loss of linear
indedependence of the vis. When orthogonality is lost, then several
copies of the same eigenvalue start appearing.

ä Full reorthogonalization – reorthogonalize vj+1 against all previous
vi’s every time.

ä Partial reorthogonalization – reorthogonalize vj+1 against all pre-
vious vi’s only when needed [Parlett & Simon]

ä Selective reorthogonalization – reorthogonalize vj+1 against com-
puted eigenvectors [Parlett & Scott]

ä No reorthogonalization – Do not reorthogonalize - but take mea-
sures to deal with ’spurious’ eigenvalues. [Cullum & Willoughby]

16-32 – eig1

Partial reorthogonalization

ä Partial reorthogonalization: reorthogonalize only when deemed
necessary.

ä Main question is when?

ä Uses an inexpensive recurrence relation

ä Work done in the 80’s [Parlett, Simon, and co-workers] + more
recent work [Larsen, ’98]

ä Package: PROPACK [Larsen] V 1: 2001, most recent: V 2.1
(Apr. 05)

ä Often, need for reorthogonalization not too strong

16-33 – eig1

The Lanczos Algorithm in the Hermitian Case

Assume eigenvalues sorted increasingly

λ1 ≤ λ2 ≤ · · · ≤ λn

ä Orthogonal projection method onto Km;

ä To derive error bounds, use the Courant characterization

λ̃1 = min
u ∈ K, u 6=0

(Au, u)

(u, u)
=

(Aũ1, ũ1)

(ũ1, ũ1)

λ̃j = min{
u ∈ K, u6=0
u ⊥ũ1,...,ũj−1

(Au, u)

(u, u)
=

(Aũj, ũj)

(ũj, ũj)

16-34 – eig1

ä Bounds for λ1 easy to find – similar to linear systems.

ä Ritz values approximate eigenvalues of A inside out:

λ1 λ2

λ̃1 λ̃2

λn−1 λn

λ̃n−1 λ̃n

16-35 – eig1

A-priori error bounds

Theorem [Kaniel, 1966]:

0 ≤ λ(m)
1 − λ1 ≤ (λN − λ1)

[
tan∠(v1, u1)

Tm−1(1 + 2γ1)

]2

where γ1 = λ2−λ1

λN−λ2
; and ∠(v1, u1) = angle between v1 and u1.

+ results for other eigenvalues. [Kaniel, Paige, YS]

Theorem

0 ≤ λ(m)
i − λi ≤ (λN − λ1)

[
κ

(m)
i

tan∠(vi, ui)

Tm−i(1 + 2γi)

]2

where γi = λi+1−λi
λN−λi+1

, κ
(m)
i =

∏
j<i

λ
(m)
j −λN
λ

(m)
j −λi

16-36 – eig1

The Lanczos biorthogonalization (AH 6= A)

ALGORITHM : 5 Lanczos bi-orthogonalization

1. Choose two vectors v1, w1 such that (v1, w1) = 1.
2. Set β1 = δ1 ≡ 0, w0 = v0 ≡ 0
3. For j = 1, 2, . . . ,m Do:
4. αj = (Avj, wj)
5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 Stop
8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11.EndDo

16-37 – eig1

ä Builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) and Km(AH, w1)

ä Many choices for δj+1, βj+1 in lines 7 and 8. Only constraint:

δj+1βj+1 = (v̂j+1, ŵj+1)

Let

Tm =


α1 β2

δ2 α2 β3

. . .
δm−1 αm−1 βm

δm αm

 .

ä vi ∈ Km(A, v1) and wj ∈ Km(AT , w1).

16-38 – eig1

If the algorithm does not break down before step m, then
the vectors vi, i = 1, . . . ,m, and wj, j = 1, . . . ,m,
are biorthogonal, i.e.,

(vj, wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and
{wi}i=1,2,...,m is a basis of Km(AH, w1) and

AVm = VmTm + δm+1vm+1e
H
m,

AHWm = WmT
H
m + β̄m+1wm+1e

H
m,

WH
mAVm = Tm .

16-39 – eig1

ä If θj, yj, zj are, respectively an eigenvalue of Tm, with associated
right and left eigenvectors yj and zj respectively, then corresponding
approximations for A are

Ritz value Right Ritz vector Left Ritz vector
θj Vmyj Wmzj

[Note: terminology is abused slightly - Ritz values and vectors nor-
mally refer to Hermitian cases.]

16-40 – eig1

Advantages and disadvantages

Advantages:

ä Nice three-term recurrence – requires little storage in theory.

ä Computes left and a right eigenvectors at the same time

Disadvantages:

ä Algorithm can break down or nearly break down.

ä Convergence not too well understood. Erratic behavior

ä Not easy to take advantage of the tridiagonal form of Tm.

16-41 – eig1

Look-ahead Lanczos

Algorithm breaks down when:

(v̂j+1, ŵj+1) = 0

Three distinct situations.

ä ‘lucky breakdown’ when either v̂j+1 or ŵj+1 is zero. In this case,
eigenvalues of Tm are eigenvalues of A.

ä (v̂j+1, ŵj+1) = 0 but of v̂j+1 6= 0, ŵj+1 6= 0 → serious
breakdown. Often possible to bypass the step (+ a few more) and
continue the algorithm. If this is not possible then we get an ...

ä ... Incurable break-down. [very rare]

16-42 – eig1

Look-ahead Lanczos algorithms deal with the second case.

See Parlett 80, Freund and Nachtigal ’90.... Main idea: when
break-down occurs, skip the computation of vj+1, wj+1 and define
vj+2, wj+2 from vj, wj. For example by orthogonalizing A2vj ...
Can define vj+1 somewhat arbitrarily as vj+1 = Avj. Similarly for
wj+1.

ä Drawbacks: (1) projected problem no longer tridiagonal (2)
difficult to know what constitutes near-breakdown.

16-43 – eig1

