Basic relaxation techniques

¢ Relaxation methods: Jacobi, Gauss-Seidel, SOR
e Basic convergence results
e Optimal relaxation parameter for SOR

e See Chapter 4 of text for details.

Basic relaxation schemes

»  Relaxation schemes: methods that modify one component of
current approximation at a time

> Based on the decomposition -F
A=D — FE — F with:

D = diag(A), — E = strict lower part of

A and —F = its strict upper part. -E

Gauss-Seidel iteration for solving Ax = b:

» corrects j-th component of current approximate solution, to zero
the 3 — th component of residual for 3 = 1,2,-:+ ,n.
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» Gauss-Seidel iteration can be expressed as:

(D — E)xz*+t) = Fz® + b

Can also define a backward Gauss-Seidel lteration:
(D — F)z*) = E2®) 4+ b

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by
backward sweep.

Over-relaxation is based on the splitting:

wA = (D —wE) — (wF + (1 —w)D)

— successive overrelaxation, (SOR):

(D — wE)x®*tY) = [wF + (1 — w)D]z® + wb
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Iteration matrices

» Previous methods based on a splittingof A: A =M — N —
Mz =Nzx+b — Mz*t)=Nz* b

xt) = MIN2® + M~1b = Gz™ + f

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

Gjoe =D Y (E+F)=1I-D"'A
Ges=(D—E)'F=I-(D-E)'A
Gsor = (D — wE) Y (wF + (1 — w)D)
=I—-(w'D-E)'A
Gssor = I —w(2 —w)(D —wF)'D(D —wE) A
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General convergence result

Consider the iteration: k) — Gz®) + f

(1) Assume that p(G) < 1. Then I — G is non-singular and G

has a fixed point. Iteration converges to a fixed point for any f and
(0)
x\).

(2) If iteration converges for any f and x(®) then p(G) < 1.

Richardson’s iteration

Assume A(A) C R. When does the iteration converge?
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A few well-known results

» Jacobi and Gauss-Seidel converge for diagonal dominant matrices,
i.e., matrices such that

|@ii| > > lagl,i=1,---,n

» SOR converges for 0 < w < 2 for SPD matrices

» The optimal w is known in theory for an important class of
matrices called 2-cyclic matrices or matrices with property A.
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» A matrix has property A if it can be (symmetrically) permuted
into a 2 X 2 block matrix whose diagonal blocks are diagonal.

PAPT = {Dl E}

ET D,

» Let A be a matrix which has property A. Then the eigenvalues
A of the SOR iteration matrix and the eigenvalues p of the Jacobi
iteration matrix are related by

A+ w—1)2 = A?p?

» The optimal w for matrices with property A is given by

2
wOpt_1+ /—1—p(B)2

where B is the Jacobi iteration matrix.
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An observation | Introduction to Preconditioning

» The iteration z**tY) = Gz® 4 f is attempting to solve
(I — G)x = f. Since G is of the form G = M ~'[M — A] and
f = M ~1b, this system becomes

M Az = M~ 'b
where for SSOR, for example, we have

Mgssor = (D = wE)D_l(D = wF)

referred to as the SSOR ‘preconditioning’ matrix.
In other words:

Relaxation iter. <—=—> Preconditioned Fixed Point lter.
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Projection methods

e Introduction to projection-type techniques
e Sample one-dimensional Projection methods
e Some theory and interpretation —

e See Chapter 5 of text for details.

Projection Methods

» The main idea of projection methods is to extract an approximate
solution from a subspace.

» We define a subspace of approximants of dimension m and a set
of  conditions to extract the solution

» These conditions are typically expressed by orthogonality con-
straints.

» This defines one basic step which is repeated until convergence
(alternatively the dimension of the subspace is increased until con-
vergence).

Each relaxation step in Gauss-Seidel can be

viewed as a projection step

12-10 Text: 5 — Proj

Background on projectors

» A projector is a linear operator p2—p
that is idempotent:

A few properties:

e P is a projector iff I — P is a projector
e x € Ran(P) iff € = Px iff « € Null({ — P)
® This means that : Ran(P) = Null( — P) .

e Any € R" can be written (uniquely) as € = x1 + x,
x1 = Px € Ran(P) 2 = (I — P)x € Null(P) - So:

R™ = Ran(P) @ Null(P)

Prove the above properties
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Background on projectors (Continued)

» The decomposition R™ = K @ S defines a (unique) projector
P:

e From x = o1 + x5, set Px = x;.

e For this P: Ran(P) = K and Null(P) = S.

e Note: dim(K) = m, dim(S) =n —m.

» Pb: express mapping * — u = Px in terms of K, S
» Noteue K,z —u €S

» Express 2nd part with m constraints: let L = S, then

» Projection onto K and

u = Paiff { X
orthogonally to L

r—ul L

12-12 Text: 5 = Proj




P:I:/

» lllustration: P projects onto K and orthogonally to L
» When L = K projector is orthogonal.
» Note: Px =0 iffe L L.
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Projection methods

» |nitial Problem: b—Ax =0

Given two subspaces K and L of R define the approximate prob-
lem:

Find x € K suchthatb — Az | L

» Petrov-Galerkin condition
» m degrees of freedom (K) + m constraints (L) —
» a small linear system (‘projected problem’)

» This is a basic projection step. Typically a sequence of such steps
are applied
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»  With a nonzero initial guess x(, approximate problem is
Find & € xg+ K suchthat b— Ax L L

Write € = @9 + 0 and 79 = b — Axy. — system for 4:
Find 8 € K such that rg — Ad L L

Formulate Gauss-Seidel as a projection method -

Generalize Gauss-Seidel by defining subspaces consisting of ‘blocks’
of coordinates span{e;, €; 11, ..., €i1p}

12-15 Text: 5 = Proj

Matrix representation:

oV = [v1,...,vy,] abasis of K &

oW = [wy,...,wy,] abasis of L

Let

»  Write approximate solution as & = xg + 6 = xo + Vy where
y € R™. Then Petrov-Galerkin condition yields:

Wl(ro— AVy) =0
» Therefore,
T = a0+ V[WTAV]_IWTTO

Remark: In practice WTAV is known from algorithm and has a
simple structure [tridiagonal, Hessenberg,..]
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Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

V = [v1,...,Vp] for K and

2. Choose bases: W = [w1, ..., wn)] for L.

r <+ b— Ax,
Yy (WFrAV)"'wr,
<+ x+ Vy.

3. Compute :
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Projection methods: Operator form representation

» Let IT = the orthogonal projector onto K and
Q the (oblique) projector onto K and orthogonally to L.

IT and Q projectors
Assumption: no vector of K is L to L

12-18 Text: 5 — Proj

In the case g = 0, approximate problem amounts to solving

OQb— Ax) =0, = € K

or in operator form (solution is Ilx)

O(b — Allz) = 0

Question: | what accuracy can one expect?
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» Let =* be the exact solution. Then
1) We cannot get better accuracy than ||[(I — IT)x*||2, i.e.,

2 — 2|l 2 [[({ — Iz,

2) The residual of the exact solution for the approximate problem
satisfies:

16 — QAILx~||; < ||QAI — ID)[|2|| (I — IT)z”||2
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Two Important Particular Cases.

1. L=K

» When A is SPD then ||* — Z||4 = min.ck ||z* — z|| 4.
» Class of Galerkin or Orthogonal projection methods

» Important member of this class: Conjugate Gradient (CG) method

2. L=AK|

In this case ||b — AZ||o = min.cx ||b — Az||2

» C(Class of Minimal Residual Methods: CR, GCR, ORTHOMIN,
GMRES, CGNR, ...
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One-dimensional projection processes

K = span{d}
and
L = span{e}

Then & = « + ad. Condition r — Ad L e yields

— (T’e)
* = Tade)

»  Three popular choices:
(1) Steepest descent
(2) Minimal residual iteration

(3) Residual norm steepest descent
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1. Steepest descent.

A'is SPD. Take at each stepd = r and e = 7.

r<b— Ax,
lteration: | & <— (7, 1) /(Ar, 1)
T < T+ ar

» Each step minimizes f(z) = |le—z*||3 = (A(z—z*), (x—
x*)) in direction —V f.

» Convergence guaranteed if A is SPD.

As is formulated, the above algorithm requires 2 ‘matvecs’ per
step. Reformulate it so only one is needed.
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Convergence based on the Kantorovitch inequality: Let B be an
SPD matrix, Apaz, Amin its largest and smallest eigenvalues. Then,

(B"B’ m)(B_lw, .’B) < ()\maaz + Amzn)2

(il?, ZB)2 o 4 )‘ma:c)\min

, Vx # 0.

» This helps establish the convergence result

Let A an SPD matrix. Then, the A-norms of the error vectors
dr = x, — xj generated by steepest descent satisfy:

A1’n,acc - A1’n,in

leella < S22 L

» Algorithm converges for any initial guess x.
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Proof:  Observe ||dk+1||?4 = (Adk+1, dk+l) = (Tk+1, dk+1)
» by substitution,

dk+1ll% = (Prg1, di — agry)

» By construction 11 L 7 so we get ||dit1]|4 = (Trt1, di).
Now:

ldks1ll% = (P — cuArg, di)
= (rry A7 rg) — oue(Thy 1)
= iy (1 - I e
(T, Ary) (rr, A7)

Result follows by applying the Kantorovich inequality. Il
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2. Minimal residual iteration.

A positive definite (A + AT is SPD). Take at each step d = r and
e = Ar.

r<b— Ax,
lteration: | & <— (Ar,r)/(Ar, Ar)
T4+ ar

» Each step minimizes f(xz) = ||b — Ax||2 in direction 7.
» Converges under the condition that A + AT is SPD.

As is formulated, the above algorithm would require 2 'matvecs’
at each step. Reformulate it so that only one matvec is required
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Convergence

Let A be a real positive definite matrix, and let
B = Amin(A + AT)/Z’ o= |All.
Then the residual vectors generated by the Min. Res. Algorithm

satisfy:
1/2
12
Il < (1 =—5 ] lirell2

» In this case Min. Res. converges for any initial guess x.
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Proof:  Similar to steepest descent. Start with

||7‘k,_|_1||§ = (’I‘k, — Oka’l‘k,, T — akArk)
= (’l"k — OékA’l"k, ’I"k) — ak(rk — akArk, A’l"k)

By construction, 711 = 1 — apArgis L Arg. > ||rpqa||3 =
('I"k — akArk, ’I’k). Then:

Irkt1ll? = (76 — arArg, Ti)
= (TkyTk) — a(Arg, T1)
= il (1 - L Te) e ) )
(Tky k) (ATy, ATy)
oGt S

(rry T1)? || ATR]3

Result follows from the inequalities (Ax, ) /(x,x) > pu > 0 and
[Arxll2 < [ All2 7l W
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3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step d = ATr and
e = Ad.

r+b— Ax,d = ATr
[teration: | ¢ <— ||d||§/||Ad||§
T+ x+ ad

» Each step minimizes f(x) = ||b — Az|| in direction —V f.

» Important Note: equivalent to usual steepest descent applied to
normal equations AT Ax = ATb .

» Converges under the condition that A is nonsingular.
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