Basic relaxation techniques

e Relaxation methods: Jacobi, Gauss-Seidel, SOR
e Basic convergence results
e Optimal relaxation parameter for SOR

e See Chapter 4 of text for details.



Basiec relaxation schemes

»  Relaxation schemes: methods that modify one component of

current approximation at a time

> Based on the decomposition -F
A=D — FE — F with:

D = diag(A), — E = strict lower part of

A and — F' = its strict upper part. -E

Gauss-Seidel iteration for solving Ax = b:

» corrects 7-th component of current approximate solution, to zero
the 3 — th component of residual for 3 =1,2,-.- , n.
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» Gauss-Seidel iteration can be expressed as:

(D — E)x*+) = Fg®) 1+ p

Can also define a backward Gauss-Seidel Iteration:
(D — F)z* ) = Ex® +p

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by
backward sweep.

Over-relaxation is based on the splitting:

wA=(D—wFE) — (wF+ (1 —w)D)

— successive overrelaxation, (SOR):

(D — wE)z*t) = [wF + (1 — w)D]z™ + wb
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Iteration matrices |

» Previous methods based on a splittingof A: A = M — N —
Mx=Nz+b — Mz*t)=Nzgk +p

k) = M-INz®) + M~1p = Gz®) + f

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

Gjoe =D Y E+F)=1I1-D1A
Ggs=(D—E)'F=1—-(D—-E)'A
Gsor = (D — wE) Y (wF + (1 — w)D)
=I—-—(w'D-E)'A
Gssor =1 —w(2—-w)(D—-—wF)'D(D -wE)'A
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General convergence result

Consider the iteration: rkt) = Gx® 4+ f

(1) Assume that p(G) < 1. Then I — G is non-singular and G

has a fixed point. lteration converges to a fixed point for any f and
(0)
x'\.

(2) If iteration converges for any f and (® then p(G) < 1.

Example: | Richardson's iteration

k) = k) L o(b — Ax*)

#] Assume A(A) C R. When does the iteration converge?
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A few well-known results I

» Jacobi and Gauss-Seidel converge for diagonal dominant matrices,
I.e., matrices such that

|asi| > > 5z lail,t =1,-- ,m

» SOR converges for 0 < w < 2 for SPD matrices

» The optimal w is known in theory for an important class of
matrices called 2-cyclic matrices or matrices with property A.
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» A matrix has property A if it can be (symmetrically) permuted
into a 2 X 2 block matrix whose diagonal blocks are diagonal.

PAPT = [Dl E]

ET D,

» Let A be a matrix which has property A. Then the eigenvalues
X of the SOR iteration matrix and the eigenvalues u of the Jacobi
iteration matrix are related by

A+ w —1)? = Aw?p?

» The optimal w for matrices with property A is given by
2

1++/1— p(B)?

where B is the Jacobi iteration matrix.
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An observation I Introduction to Preconditioning

» The iteration z*tY) = Gz*¥) 4+ f is attempting to solve
(I — G)x = f. Since G is of the foom G = M ~'[M — A] and
f = M ~1b, this system becomes

M 1Ax = M~ 'b
where for SSOR, for example, we have

Mgsor = (D — wE)D‘l(D — wF)

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation iter. <—> Preconditioned Fixed Point lIter.
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Projection methods

¢ Introduction to projection-type techniques
e Sample one-dimensional Projection methods
e Some theory and interpretation —

e See Chapter 5 of text for details.



Projection Methods

» The main idea of projection methods is to extract an approximate
solution from a subspace.

» We define a subspace of approximants of dimension m and a set
of 1 conditions to extract the solution

» These conditions are typically expressed by orthogonality con-
straints.

» This defines one basic step which is repeated until convergence
(alternatively the dimension of the subspace is increased until con-
vergence).

Example: | Each relaxation step in Gauss-Seidel can be
viewed as a projection step
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Background on projectors

» A projector is a linear operator pP2—p
that is idempotent:

A few properties: |

® P is a projector iff I — P is a projector

x € Ran(P) iff € = Px iff « € Null({ — P)

® This means that : Ran(P) = Null( — P) .

e Any x € R"” can be written (uniquely) as € = x1 + x3,

I

#
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1 = Px € Ran(P) 2 = (I — P)x € Null(P) - So:

R™ = Ran(P) & Null(P)

Prove the above properties
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Background on projectors (Continued)

» The decomposition R™ = K @ S defines a (unique) projector
P:

e From x = 1 + xo, set Pxr = x1.

e For this P: Ran(P) = K and Null(P) = S.

e Note: dim(K) = m, dim(S) = n — m.

» Pb: express mapping € — uw = Px in terms of K, S
» Noteue K, x—uesS

» Express 2nd part with m constraints: let L = S, then

. » Projection onto K and
u = Pax iff { uck J
e orthogonally to L
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Pa:/

» |llustration: P projects onto K and orthogonally to L
» When L = K projector is orthogonal.
» Note: Pr =0 iffx L L.




Projection methods

» Initial Problem: b— Ax =20

Given two subspaces K and L of RYY define the approximate prob-
lem:

Find x € K suchthatb — Ax | L

» Petrov-Galerkin condition
» m degrees of freedom (K) + m constraints (L) —
» a small linear system (‘projected problem’)

» This is a basic projection step. Typically a sequence of such steps
are applied




» With a nonzero initial guess @, approximate problem is

Find € g+ K suchthat b — Az | L

Write € = @9 + 0 and r¢ = b — Axy. — system for o:

Find 0 € K such that rg — Ad L L

#| Formulate Gauss-Seidel as a projection method -

#| Generalize Gauss-Seidel by defining subspaces consisting of ‘blocks’
of coordinates span{e;, €;y1, ..., €i1p}
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Matrix representation:

Let

»  Write approximate solution as € = xg + 0 = xy + Vy where

oV = [vy,...,vy,] a basis of K &

o W = [wy,...,w,y,] a basis of L

y € R™. Then Petrov-Galerkin condition yields:

Wh(ro — AVy) =0

» Therefore,

Remark: In practice W1 AV is known from algorithm and has a

Tr = 4 i) —+ V[WTAV]_le’PO

simple structure [tridiagonal, Hessenberg, . ]
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Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;
V = [v1,...,0p] for K and

2. Choose bases: W = [wi,...,wnm| for L.

r<b— Ax,
3. Compute : y +— (WTAV)"'wTr,
x <+—x+ Vy.
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Projection methods: Operator form representation

» Let II = the orthogonal projector onto K and
Q the (oblique) projector onto K and orthogonally to L.

I €¢ K, —1Ix 1L K T
Qr €¢ K, £ —Qx 1L L

Q;L// | V/

II and Q projectors

Assumption: no vector of K is | to L
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In the case £y = 0, approximate problem amounts to solving

Qb— Ax) =0, = € K

or in operator form (solution is Ilx)

Q(b— Allx) =0

Question: | what accuracy can one expect?
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» Let ™ be the exact solution. Then
1) We cannot get better accuracy than ||(I — IT)x*||s, i.e.,
|2 — "]l 2 ||(L — IT)z"||2

2) The residual of the exact solution for the approximate problem
satisfies:

|6 — QATIz" ||, < [|[ QAW — II) ||o| (I — TT)z*||
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Two Important Particular Cases.

1. L:KI

» When A is SPD then ||z* — ||4 = min,cg ||x* — 2z|| 4.

» (lass of Galerkin or Orthogonal projection methods

» Important member of this class: Conjugate Gradient (CG) method

2. L=AK|.

In this case ||b — Ax||s = min ck ||b — Az||2

» C(Class of Minimal Residual Methods: CR, GCR, ORTHOMIN,
GMRES, CGNR, ...
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One-dimensional projection processes

K = span{d}
and
L = span{e}

Then £ = x + ad. Condition r — A0 L e yields

_ (re)
& = TaAd,e)

» Three popular choices:
(1) Steepest descent
(2) Minimal residual iteration

(3) Residual norm steepest descent

12-22
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1. Steepest descent. |

A is SPD. Take at each step d = r and e = 7.

r<—b— Ax,
lteration: | & <— (r,7)/(Ar,r)
T < x+ or

» Each step minimizes f(xz) = |[|e—z*||4 = (A(z—a*), (z—
x*)) in direction —V f.

» Convergence guaranteed if A is SPD.

#| As is formulated, the above algorithm requires 2 ‘matvecs’ per
step. Reformulate it so only one is needed.
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Convergence based on the Kantorovitch inequality: Let B be an
SPD matrix, Ajnaz, Amin its largest and smallest eigenvalues. Then,

(Bx,)(B~'2,2) _ (Amaz + Amin)’
(:B, w)z o 4 )‘maw>\min

, Vax #* 0.

» This helps establish the convergence result

Let A an SPD matrix. Then, the A-norms of the error vectors
dp = x, — x) generated by steepest descent satisfy:

Amaw - A'mz'n,

ldigalla < T2 ldell

» Algorithm converges for any initial guess a.
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Proof: Observe ||dk+1||?4 = (Adk_|_1, dk_|_1) = (’I"k_|_1, dk_|_1)

» by substitution,

|di+1ll% = (Ths1, de — agry)

» By construction 741 L 7k so we get ||dg+1]|% = (Per1, di).
Now:
ldk+1lly = (ri — cuAry, dy)
= (1, A7) — (7R, 1)

B 5 (Tks Tk) (Tks Tk)
= lldilly <1  (riy A7) 8 (ks A_lrk)) .

Result follows by applying the Kantorovich inequality. |
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2. Minimal residual iteration.

A positive definite (A + A? is SPD). Take at each step d = 7 and
e = Ar.

r<b— Ax,
lteration: | & <— (Ar,r)/(Ar, Ar)
T <— x+ or

» Each step minimizes f(x) = ||b — Ax||5 in direction 7.
» Converges under the condition that A + AT is SPD.

#| As is formulated, the above algorithm would require 2 'matvecs’
at each step. Reformulate it so that only one matvec is required
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Convergence \

Let A be a real positive definite matrix, and let
= Amin(A + AT)/za o= [|All2.

Then the residual vectors generated by the Min. Res. Algorithm

satisfy:
1/2
1?2
[7r41ll2 < (1 — ;) 7% |2

» In this case Min. Res. converges for any initial guess xy.




Proof:  Similar to steepest descent. Start with

||’l°k_|_1||§ e (’l“k — OékA’l"k, T — akArk)
= (’l“k — akArk, ’Pk) — ak(rk — akA'rk, A’l‘k)

By construction, 11 = T, — apArgis L Arg. > ||rps1]|s =
(’Pk — OékA’I“k, ’I“k). Then:

7611l = (K — apAri, Ty)
= (Tky Tk) — O (AT, T)
9 (Arka rk) (Arka rk)
= [|rell3 {1 —
(T, ) (AT, ATy)

_ ||"“k||2 (1 _ (14”%7/'%)2 ||’I°k||§ )
— 5 .

(e, )2 || ATE|5

Result follows from the inequalities (Ax, ) /(x,x) > pu > 0 and
[Arkllz < [|All2 (7]l H

12-28 Text: 5 — Proj




3. Residual norm steepest descent. |

A is arbitrary (nonsingular). Take at each step d = ATr and
e = Ad.

r<«b— Ax,d = Alr
lteration: | ¢ <— ||d||§/||Ad||§
T+ T+ ad

» Each step minimizes f(x) = ||b — Ax||3 in direction —V f.

» |mportant Note: equivalent to usual steepest descent applied to
normal equations ATAx = ATb .

» Converges under the condition that A is nonsingular.
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