APPLICATIONS OF GRAPH LAPLACEANS: Graph Embeddings, and Dimension Reduction

- Graph Embeddings, vertex embeddings. The problem
- Use of Graph Laplaceans, Laplacean Eigenmaps
- Use of similarity graphs: Locally Linear Embeddings
- Explicit dimension reduction method: PCA
- Explicit graph-based dimension reduction method: LLP, ONPP.

$Graph\ embeddings$

- ightharpoonup Trivial use: visualize a graph (d=2)
- Wish: mapping should preserve similarities in graph.
- Many applications [clustering, finding missing link, semi-supervised learning, community detection, ...]
- We will see two *nonlinear* classical methods: Eigenmaps, LLE
 ...
- ... and two linear (explicit) ones.

Given: a graph that models some data points x_1, x_2, \cdots, x_n [simplest case: a kNN graph of x_1, x_2, \cdots, x_n]

Data:
$$X = [x_1, x_2, \cdots, x_n] \longrightarrow \mathsf{Graph}$$
:

➤ Graph captures similarities, closeness, ..., in data

Objective: Build a mapping of each vertex i to a data point $y_i \in \mathbb{R}^d$

Many methods to do this. Eigenmaps is one of the best known

- Eigenmaps uses the graph Laplacean
- Recall: Graph Laplacean is a matrix defined by :

$$L = D - W$$

$$\left\{egin{array}{l} w_{ij} \geq 0 & ext{if } j \in Adj(i) \ w_{ij} = 0 & ext{else} \end{array}
ight. \quad D = ext{diag} \left[egin{array}{l} d_{ii} = \sum_{j
eq i} w_{ij}
ight]
ight.$$

with Adj(i) = neighborhood of i (excludes i)

- Remember that vertex i represents data item x_i . We will use i or x_i to refer to the vertex.
- \blacktriangleright We will find the y_i 's by solving an optimization problem.

The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

$$\mathcal{F}(Y) = \sum_{i,j=1}^n w_{ij} \|y_i - y_j\|^2$$
 subject to $YDY^ op = I$

Motivation: if $\|x_i - x_j\|$ is small (orig. data), we want $\|y_i - y_j\|$ to be also small (low-Dim. data)

- Original data used indirectly through its graph
- ➤ Objective function can be translated to a trace (see Property 3 in Lecture notes 9) and will yield a sparse eigenvalue problem

Problem translates to:

$$\min_{egin{array}{c} oldsymbol{Y} \in \mathbb{R}^{d imes n} \ oldsymbol{Y} oldsymbol{D} oldsymbol{Y}^ op = oldsymbol{I} \end{array}} \mathsf{Tr} \left[oldsymbol{Y} (oldsymbol{D} - oldsymbol{W}) oldsymbol{Y}^ op
ight] \; .$$

Solution (sort eigenvalues increasingly):

$$(D-W)u_i=\lambda_i D u_i \ ; \quad y_i=u_i^ op; \quad i=1,\cdots,d$$

- ightharpoonup An n imes n sparse eigenvalue problem [In 'sample' space]
- ightharpoonup Note: can assume D=I. Amounts to rescaling data. Problem becomes

$$(I-W)u_i=\lambda_i u_i \ ; \quad y_i=u_i^ op; \quad i=1,\cdots,d$$

$Locally\ Linear\ Embedding\ (Roweis-Saul-00)$

- ➤ LLE is very similar to Eigenmaps. Main differences:
- 1) Graph Laplacean matrix is replaced by an 'affinity' graph
- 2) Objective function is changed: want to preserve graph

1. Graph: Each x_i is written as a convex combination of its k nearest neighbors:

$$x_i pprox \Sigma w_{ij} x_j, \quad \sum_{j \in N_i} w_{ij} = 1$$

Optimal weights computed ('local calculation') by minimizing

$$\|x_i - \Sigma w_{ij} x_j\|$$
 for $i=1,\cdots,n$

2. Mapping:

The y_i 's should obey the same 'affinity' as x_i 's \leadsto

Minimize:

$$\sum_i \left\| y_i - \sum_j w_{ij} y_j
ight\|^2$$
 subject to: $oldsymbol{Y} \, \mathbb{1} = 0, \quad oldsymbol{Y} oldsymbol{Y}^ op = oldsymbol{I}$

Solution:

$$(I-W^ op)(I-W)u_i = \lambda_i u_i; \qquad y_i = u_i^ op$$
 .

 $ightharpoonup (I-W^{ op})(I-W)$ replaces the graph Laplacean of eigenmaps

Implicit vs explicit mappings

Background: Principal Component Analysis (PCA)

Dimension reduction via PCA: We are given a data set $X = [x_1, x_2, \ldots, x_n]$, and want a linear mapping from X to Y, expressed as:

ightharpoonup m-dimens. objects (x_i) 'flattened' to d-dimens. space (y_i)

ightharpoonup In PCA $oldsymbol{V}$ is orthogonal $(oldsymbol{V}^Toldsymbol{V}=oldsymbol{I})$

In Principal Component Analysis $V \in \mathbb{R}^{m \times d}$ is computed to maximize variance of projected data:

$$\max_{V\;;\;V^ op V=I} \quad \sum_{i=1}^d \left\| y_i - rac{1}{n} \sum_{j=1}^n y_j
ight\|_2^2, \;\; y_i = V^ op x_i.$$

Leads to maximizing

Tr
$$\left[V^ op(X-\mu e^ op)(X-\mu e^ op)^ op V
ight], \quad \mu=rac{1}{n}\Sigma_{i=1}^n x_i$$

ightharpoonup Solution $V=\{$ dominant eigenvectors $\}$ of the covariance matrix

graphEmbed

Explicit (linear) vs. Implicit (nonlinear) mappings:

In PCA the mapping Φ from high-dimensional space (\mathbb{R}^m) to low-dimensional space (\mathbb{R}^d) is explicitly known:

$$y = \Phi(x) \equiv V^T x$$

In Eigenmaps and LLE we only know

$$y_i = \phi(x_i), i = 1, \cdots, n$$

- Mapping ϕ is now implicit: Very difficult to compute $\phi(x)$ for an x that is not in the sample (i.e., not one of the x_i 's)
- Inconvenient for classification. Thus is known as the "The outof-sample extension" problem

Locally Preserving Projections (He-Niyogi-03)

➤ LPP is a linear dimensionality reduction technique

lacksquare Recall the setting: Want $oldsymbol{V} \in \mathbb{R}^{m imes d}$; $oldsymbol{Y} = oldsymbol{V}^ op oldsymbol{X}$

Starts with the same neighborhood graph as Eigenmaps: $L \equiv D - W = \text{graph 'Laplacean'}$; with $D \equiv diag(\{\Sigma_i w_{ij}\})$.

Optimization problem is to solve

$$\min_{Y \ \in \mathbb{R}^{d imes n}, \ YDY^ op = I} \quad \Sigma_{i,j} w_{ij} \left\lVert y_i - y_j
ight
Vert^2, \ \ Y = V^ op X.$$

- ightharpoonup Difference with eigenmaps: $oldsymbol{Y}$ is an explicit projection of $oldsymbol{X}$
- Solution (sort eigenvalues increasingly)

$$XLX^ op v_i = \lambda_i XDX^ op v_i \quad y_{i,:} = v_i^ op X$$

Note: essentially same method in [Koren-Carmel'04] called 'weighted PCA' [viewed from the angle of improving PCA]

ONPP (Kokiopoulou and YS '05)

- Orthogonal Neighborhood Preserving Projections
- m > A linear (orthogonoal) version of LLE obtained by writing m Y in the form $m Y = m V^ op m X$
- ightharpoonup Same graph as LLE. Objective: preserve the affinity graph (as in LLE) *but* with the constraint $Y=V^{ op}X$
- Problem solved to obtain mapping:

$$\min_{m{V}} \mathsf{Tr} \left[m{V}^ op m{X} (m{I} - m{W}^ op) (m{I} - m{W}) m{X}^ op m{V}
ight]$$
s.t. $m{V}^T m{V} = m{I}$

ightharpoonup In LLE replace $oldsymbol{V}^ opoldsymbol{X}$ by $oldsymbol{Y}$

More recent methods

➤ Quite a bit of recent work - e.g., methods: node2vec, DeepWalk, GraRep,

See the following papers:

- [1] William L. Hamilton, Rex Ying, and Jure Leskovec Representation Learning on Graphs: Methods and Applications arXiv:1709.05584v3
- [2] Shaosheng Cao, Wei Lu, and Qiongkai Xu GraRep: Learning Graph Representations with Global Structural Information, CIKM, ACM Conference on Information and Knowledge Management, 24
- [3] Amr Ahmed, Nino Shervashidze, and Shravan Narayanamurthy, Distributed Large-scale Natural Graph Factorization [Proc. WWW 2013, May 1317, 2013, Rio de Janeiro, Brazil]

... among many others