APPLICATIONS OF GRAPH LAPLACEANS:
CLUSTERING

e Details on clustering

e K-means

e Similarity graphs, KNN graphs
e Edge cuts, ratio cuts, etc.

e Application: segmentation

Clustering: Background

» Problem: we are given n data items: x1, 2, - , x,. Would
like to ‘cluster’ them, i.e., group them so that each group or cluster
contains items that are similar in some sense.

» Example: materials » Example: Digits
Photovoltaic PCA - digits : 5 —— 7
Superhard sr
Superconductors ‘ et N
L SO
-~ & s - oo LY
Ferromagnetlc ol . . LS
-1t) ‘ o ° e * o
% o
Q Q | g
° ®
Sl oo ©
g 0 © o5
- . Catalytic b ° 280 .6
Multi-ferroics Thermo-electric PRI .7

» Refer to each group as a ‘cluster’ or a ‘class’

» A basic method: K-Means

10-2 — Clustering

A basic method: K-means

» A basic algorithm that uses Euclidean distance

I Select p initial centers: ¢;, ca, ..., ¢, for classes 1,2, , p
2 For each x; do: determine class of x; as argming||x; — ci||
3 Redefine each ¢ to be the centroid of class k
4 Repeat until convergence
C1 o ® o
. . .
o © o » Simple algorithm
o .
°c, » Works well (gives good
o o
o o results) but can be slow
Cy o © » Performance depends on
° initialization
o o

Methods based on simailarity graphs

» (lass of Methods that perform clustering by exploiting a graph
that describes the similarities between any two items in the data.

» Need to:

1. decide what nodes are in the neighborhood of a given node ?

2. quantify their similarities - by deciding on weights between any two
'similar’ nodes.

Example:

For text data: Can decide that any columns 2z and 3

with a cosine greater than 0.95 are ‘similar’ and assign that cosine

value to Wi j

10-4

— Clustering

Fairst task: build a ‘stmilarity’ graph

» Goal: to build a similarity graph, i.e., a graph that captures
similarity between any two items

» Two methods: K-nearest Neighbor graphs or use Gaussian (‘heat’)
kernel

10-5 — Clustering

K-nearest neighbor graphs |

» Given: a set of n data points X = {x1,...,x,} —> vertices

» Given: a proximity measure between two data points x; and x;
— as measured by a quantity dist(x;, ;)

» Want: For each point x; a list of the ‘nearest neighbors’ of x;
(edges between x; and these nodes).

» Note: graph will usually be directed — need to symmetrize

10-6 — Clustering

Nearest neighbor graphs

» For each node, get a few of the nearest neighbors — Graph

Data O

Graph O

» Problem: How to build a nearest-neighbor graph from given date

» We will revisit this later.

10-7 — Clustering

Two types of nearest neighbor graph often used:
€-graph: Edges consist of pairs (x;, ;) such that

p(wiv wj) <e€

kNN graph: Nodes adjacent to x; are those nodes x, with the
k with smallest distances p(x;, xy).

» e-graph is undirected and is geometrically motivated. Issues: 1)
may result in disconnected components 2) what €7

» kNN graphs are directed in general (can be trivially fixed).
» kNN graphs especially useful in practice.

10-8 — Clustering

Similarity graphs: Using ‘heat-kernels’

Define weight between 2 and 7 as:

y

—llz;—=,|?
w;; = fij X (€ x o if |l — x| <
0 if not

\
» Note ||x; — ;|| could be any measure of distance...

» fi; = optional = some measure of similarity - other than distance
» Only nearby points kept.

» Sparsity depends on parameters

10-9 — Clustering

Edge cuts, ratio cuts, normalized cuts, ...

» Assume now that we have built a ‘similarity graph’

» Setting is identical with that of graph partitioning.

» Need a Graph Laplacean: L = D —W with w;; = 0, w;; > 0
and D = diag(W * ones(n, 1)) [in matlab notation]

» Partition vertex set V' in two sets A and B with
AUB=V, ANB=0

» Define

cut(A, B) = Z w(u, v)

u €A, vEB

10-10 — Clustering

» First (naive) approach: use this measure to partition graph, i.e.,
... Find A and B that minimize cut(A, B).

» Issue: Small sets, isolated nodes, big imbalances,

oo ¢ . © Nin-cutt
©e% ¢ o
® o
o ! o
o0 ©
®) ® : /I/ @
® e Min-cut 2
o o0 ® !

Better cut

10-11 — Clustering

» Standard Graph Partitioning approach: Find A, B by solving

Minimize cut(A, B), subject to |A| = | B]|

» Condition |A| = |B| not too meaningful in some applications -
too restrictive in others.

» Minimum Ratio Cut approach. Find A, B by solving:

cut(A,B)
|Al.|B|

Minimize

» Difficult to find solution (original paper [Wei-Cheng '91| proposes
several heuristics)

» Approximate solution : spectral .

10-12 — Clustering

Theorem [Hagen-Kahng, 91] If A is the 2nd smallest eigenvalue
of L, then a lower bound for the cost ¢ of the optimal ratio cut
partition, Is:

A
02—2.
n

Proof: Consider an optimal partition A, B and let p = |A|/n,q =
|B|/n. Note that p+q = 1. Let « be the vector with coordinates

_Jq it e A
i = —pifi € B

Note that @ L 1. Also if (¢,5) == an edge-cut then x; — x; =
q — (—p) = q+ p = 1, otherwise ; — x; = 0. Therefore,
' Lx =3 ; hep(xi — x;)° = w(A, B). In addition:

Al.|B
|z||? = pg*n + gp*n = pq(p + q)n = pgn = AEL

Therefore, by the Courant-Fischer theorem:
(Lz,x) w(A,B)

— n X = nNn X C
(z, x) |Al.|B]

Ay <

Hence result. Il

» l|dea is to use this eigenvector to determine partition, e.g., based
on sign of entries. Use the ratio-cut measure to actually determine

where to split.

10-14 — Clustering

Normalized cuts [Shi-Malik,2000]

» Recall notation w(X,Y) = > x.cy w(x,y) - then define:

10-15

ncut(A, B) = C:’)if:%) -+

cut(A,B)

w(B,V)

Goal is to avoid small sets A, B

What is w(A, V') in the case when w;; == 17

Let & be an indicator vector:

Recall that:

_[lifieA
"= l0ificB

!l Lx = D i WiglTi —

7o

— Clustering

» Therefore:
cut(A, B) = Z w;; = ' Lx

w(B,V) = mz:: di=01-z)Wl=01-2)'D1

a:j:O

» Goal now: to minimize ncut

. (A B — . ! Lz n ! Lz
W (4,B) = w@-rg{ltgfl} xI'Dx (1 —x)'Dx

10-16 — Clustering

vYvY

10-17

- w(A,V) z'D1
Let b= w(B,V) (1-—z)TD1
y=z—B(1—=x)

. y'Ly
Then we need to solve: » I{%,IPB} yT Dy

Subject to yI'D1 =0

+ Relax — need to solve Generalized eigenvalue problem

Ly = ADy

Y1 = 1 is eigenvector associated with eigenvalue Ay = 0

Y2 associated with second eigenvalue solves problem.

— Clustering

A few properties

#| Show that

cut(A, B)
w(A,V) X w(B,V)

ncut(A, B) = o X

where o iIs a constant

#| How do ratio-cuts and normalized cuts compare when the graph
is d-regular (same degree for each node).

10-18 — Clustering

Extension to more then 2 clusters

» Just like graph partitioning we can:

1. Apply the method recursively [Repeat clustering on the resulted
parts]

2. or compute a few eigenvectors and run K-means clustering on these
eigenvectors to get the clustering.

10-19 — Clustering

Application: Image segmentation

» First task: obtain a graph from pixels.

» Common idea: use “Heat kernels”

» Let F,; = feature value (e.g., brightness), and Let X; = spatial
position.

Then define

(2
—||Fi_Fj||2 —[1 X=Xl

wi;=e 4 x e x iX;—Xll<r
0 else

\
» Sparsity depends on parameters

10-20 — Clustering

Spectral clustering: General approach

1 Given: Collection of data samples {x1, X2, + , Ty}

2 Build a similarity graph between items

3 Compute (smallest) eigenvector (s) of resulting graph Laplacean
4 Use k-means on eigenvector (s) of Laplacean

» For Normalized cuts solve generalized eigen problem.

10-21 — Clustering

» Alg. Multiplicity of eigenvalue zero = # connected components.

Building a nearest neighbor graph

» Question: How to build a nearest-neighbor graph from given
data?

Data o

Graph O

» Will demonstrate the power of a divide a conquer approach
combined with the Lanczos algorithm.

» Note: The Lanczos algortithm will be covered in detail later

10-23 — knn

Recall: Two common types of nearest neighbor graphs
€-graph: Edges consist of pairs (x;, ;) such that

p(wiv wj) <e€

kNN graph: Nodes adjacent to x; are those nodes x, with the
k with smallest distances p(x;, xy).

» e-graph is undirected and is geometrically motivated. Issues: 1)
may result in disconnected components 2) what €7

» kNN graphs are directed in general (can be trivially fixed).
» kNN graphs especially useful in practice.

10-24 — knn

Divide and conquer KNN: key ingredient

» Key ingredient is Spectral bisection

» Let the data matrix X = [z,...,x,] € R

» Each column == a data point.

» Center the data: X = [@1,...,8%,] = X — ce”
where ¢ == centroid; e = ones(d, 1) (matlab)

Goal: Split X into halves using a hyperplane.
Method: Principal Direction Divisive Partitioning D. Boley, '98.

Idea: Use the (o, u,v) = largest singular triplet of X with:

ul' X = ov?.

10-25 — knn

» Hyperplane is defined as (u,) = 0, i.e., it splits the set of
data points into two subsets:

X, ={z; |ul'a; >0} and X_ = {z;|u’'%; <0}.

-

+ SIDE

Hyperplane
» Note that ul®;, = ut Xe, = ovle; —
1 1 1

10-26 — knn

X_I_Z{wil’l)iZO} and X_={$i|’v7;<0},

where v; is the 2-th entry of v.

» |n practice: replace above criterion by

X, ={x; | v; > med(v)} & X_ = {x; | v; < med(v)}

where med(v) == median of the entries of v.

» For largest singular triplet (o, u,v) of X : use Golub-Kahan-
Lanczos algorithm or Lanczos applied to XXTor XTX

» Cost (assuming s Lanczos steps) : O(n X d X s) ; Usually: d
very small

10-27 —_————————— e —~knn

Two divide and conquer algorithms

Overlap method: divide current set into two overlapping subsets
Xla X2

Glue method: divide current set into two disjoint subsets X1, X5
plus a third set X3 called gluing set.

: <~ hyperplane | hyperplane

10-28 — knn

The Overlap Method \

» Divide current set X into two overlapping subsets:

X, = {CUz | v; > _ha(S’v)} and Xo = {wz | v; < ha(S'v)}a

e where S, = {|v;|] | 2 =1,2,...,n}.

e and h(-) is a function that returns an element larger than (100a) %
of those in S,.

» Rationale: to ensure that the two subsets overlap (100ax)% of
the data, i.e.,
[X1 N Xo| = [af X]].

The Glue Method |

Divide the set X into two disjoint subsets X7 and X5 with a gluing
subset Xj:

X1UX2 — X, leXQ — @, XlﬂX;g ?é 0, XzﬂXg # @.

Criterion used for splitting:
X1={$i|’vi>0}, Xzz{wi|vi<0},

X3 = {wz | _ha(Sv) S v; < ha(Sv)}°

Note: gluing subset X3 here is just the intersection of the sets
X1, X5 of the overlap method.

10-30 — knn

Approximate kNN Graph Construction: The Overlap Method

10-31

function G = kKNN-Overlap[X, k, o
G <+ Call ENN-BruteForce| X, k]
else
(X1, X2) < Call Divide-Overlap[X, a]
G, < Call kENN-Overlap[X1, k, o
G, < Call kENN-Overlap[X5, k, o
G <+ Call Conquer[G1, G2]
Call Refine|G]
EndIf
End

— knn

Approximate kNN Graph Construction: The Glue Method

G = kENN-Glue[X, k, o]
G <+ Call ENN-BruteForce| X, K]
else
(Xl, Xo, Xg) <— Call Divide-Glue X, o
G, < Call kNN-Glue[X1, k, o]
G, < Call kENN-Glue[X5, k, o
G35 < Call kNN-Glue[X3, k, o]
G <+ Call Conquer|G1, G2, G5
Call Refine[G]
EndIf
End

10-32

Theorem The time complexity for the overlap method is
T,(n) = @(dnto)a
1
1 —log,(1+a)
T'heorem The time complexity for the glue method is

T,(n) = ©(dn"/a),

where: t, = lOgZ/(l—l—a) 2 =

where t, is the solution to the equation: % + ot = 1.

Example: | When o = 0.1, then t, = 1.16 while t; = 1.12.

Reference:

Jie Chen, Haw-Ren Fang and YS, “Fast Approximate kNN Graph
Construction for High Dimensional Data via Recursive Lanczos Bi-

section” JMLR, vol. 10, pp. 1989-2012 (2009).

