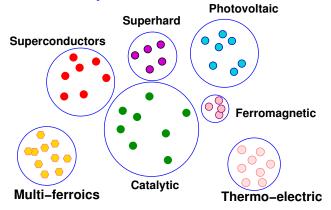
APPLICATIONS OF GRAPH LAPLACEANS: CLUSTERING

- Details on clustering
- K-means
- Similarity graphs, KNN graphs
- Edge cuts, ratio cuts, etc.
- Application: segmentation

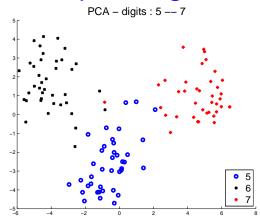
Clustering: Background

Problem: we are given n data items: x_1, x_2, \dots, x_n . Would like to 'cluster' them, i.e., group them so that each group or cluster contains items that are similar in some sense.

Example: materials



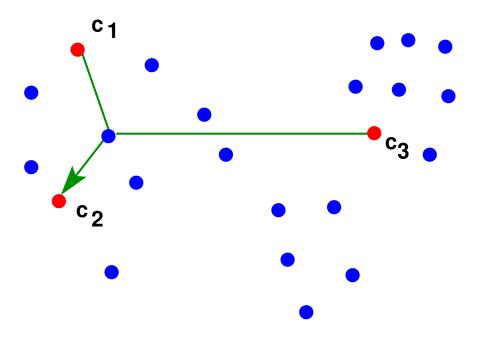
Example: Digits



- Refer to each group as a 'cluster' or a 'class'
- A basic method: K-Means

A basic method: K-means

- ➤ A basic algorithm that uses Euclidean distance
 - 1 Select p initial centers: $c_1, c_2, ..., c_p$ for classes $1, 2, \cdots, p$
 - 2 For each x_i do: determine *class* of x_i as $\operatorname{argmin}_k \|x_i c_k\|$
 - 3 Redefine each c_k to be the centroid of class k
 - 4 Repeat until convergence



- Simple algorithm
- Works well (gives good results) but can be slow
- Performance depends on initialization

Clustering

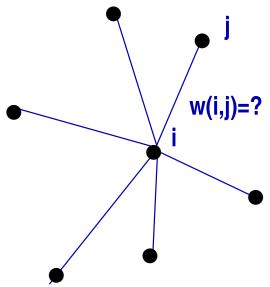
Methods based on similarity graphs

- Class of Methods that perform clustering by exploiting a graph that describes the similarities between any two items in the data.
- ➤ Need to:
- 1. decide what nodes are in the neighborhood of a given node?
- 2. quantify their similarities by deciding on weights between any two 'similar' nodes.

Example: For text data: Can decide that any columns i and j with a cosine greater than 0.95 are 'similar' and assign that cosine value to w_{ij}

First task: build a 'similarity' graph

➤ Goal: to build a similarity graph, i.e., a graph that captures similarity between any two items



Two methods: K-nearest Neighbor graphs or use Gaussian ('heat') kernel

- Clustering

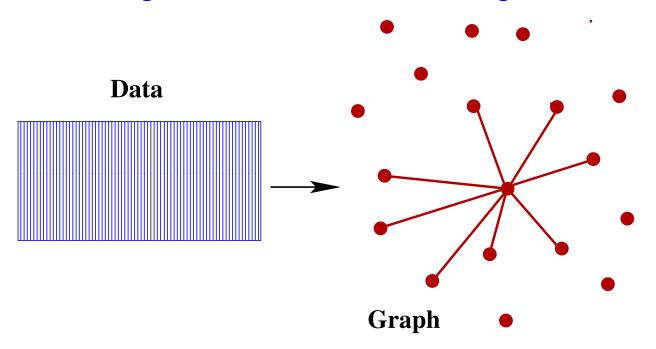
K-nearest neighbor graphs

- ightharpoonup Given: a set of n data points $X=\{x_1,\ldots,x_n\} o$ vertices
- Figure Given: a proximity measure between two data points x_i and x_j and a measured by a quantity $dist(x_i,x_j)$
- Want: For each point x_i a list of the 'nearest neighbors' of x_i (edges between x_i and these nodes).
- \blacktriangleright Note: graph will usually be directed \rightarrow need to symmetrize

- Clustering

Nearest neighbor graphs

 \succ For each node, get a few of the nearest neighbors ightarrow Graph



- Problem: How to build a nearest-neighbor graph from given date
- We will revisit this later.

Two types of nearest neighbor graph often used:

Edges consist of pairs (x_i,x_j) such that $ho(x_i,x_j) \leq \epsilon$

knn graph: Nodes adjacent to x_i are those nodes x_ℓ with the k with smallest distances $ho(x_i,x_\ell)$.

- \triangleright ϵ -graph is undirected and is geometrically motivated. Issues: 1) may result in disconnected components 2) what ϵ ?
- \triangleright **k**NN graphs are directed in general (can be trivially fixed).
- \triangleright kNN graphs especially useful in practice.

Similarity graphs: Using 'heat-kernels'

Define weight between i and j as:

$$w_{ij} = f_{ij} \; imes \; egin{cases} e^{rac{-\|x_i - x_j\|^2}{\sigma_X^2}} ext{ if } \|x_i - x_j\| < r \ 0 & ext{ if not} \end{cases}$$

- Note $||x_i x_j||$ could be any measure of distance...
- $m{ ilde{f}} = \mathsf{optional} = \mathsf{some} \; \mathsf{measure} \; \mathsf{of} \; \mathsf{similarity} \; \mathsf{-} \; \mathsf{other} \; \mathsf{than} \; \mathsf{distance}$
- Only nearby points kept.
- Sparsity depends on parameters

Edge cuts, ratio cuts, normalized cuts, ...

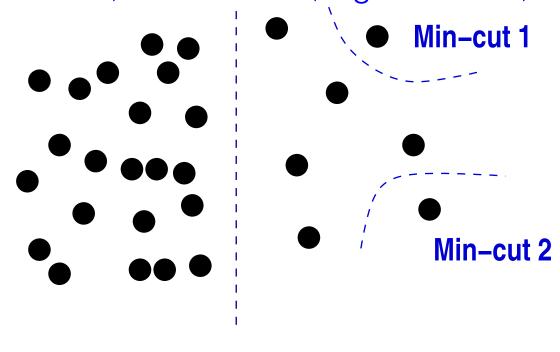
- Assume now that we have built a 'similarity graph'
- Setting is identical with that of graph partitioning.
- Need a Graph Laplacean: L=D-W with $w_{ii}=0, w_{ij}\geq 0$ and D=diag(W*ones(n,1)) [in matlab notation]
- \succ Partition vertex set V in two sets A and B with

$$A \cup B = V$$
, $A \cap B = \emptyset$

Define

$$cut(A,B) = \sum_{u \ \in A,v \in B} w(u,v)$$

- First (naive) approach: use this measure to partition graph, i.e.,
- ... Find A and B that minimize cut(A,B).
- Issue: Small sets, isolated nodes, big imbalances,



Better cut

$\overline{Ratio\text{-}cuts}$

ightharpoonup Standard Graph Partitioning approach: Find A,B by solving

Minimize
$$cut(A,B)$$
, subject to $|A|=|B|$

- ightharpoonup Condition |A|=|B| not too meaningful in some applications too restrictive in others.
- \blacktriangleright Minimum Ratio Cut approach. Find A,B by solving:

Minimize
$$\frac{cut(A,B)}{|A|.|B|}$$

- ➤ Difficult to find solution (original paper [Wei-Cheng '91] proposes several heuristics)
- Approximate solution : spectral .

Theorem [Hagen-Kahng, 91] If λ_2 is the 2nd smallest eigenvalue of L, then a lower bound for the cost c of the optimal ratio cut partition, is:

$$c \geq rac{\lambda_2}{n}.$$

Proof: Consider an optimal partition A,B and let p=|A|/n,q=|B|/n. Note that p+q=1. Let x be the vector with coordinates

$$x_i = \left\{egin{array}{ll} q & ext{if } i \in A \ -p & ext{if } i \in B \end{array}
ight.$$

Note that $x\perp 1$. Also if (i,j)== an edge-cut then $x_i-x_j=q-(-p)=q+p=1$, otherwise $x_i-x_j=0$. Therefore, $x^TLx=\sum_{(i,j)\in E}(x_i-x_j)^2=w(A,B)$. In addition: $\|x\|^2=pq^2n+qp^2n=pq(p+q)n=pqn=rac{|A|.|B|}{n}$.

Therefore, by the Courant-Fischer theorem:

$$\lambda_2 \leq rac{(Lx,x)}{(x,x)} = n imes rac{w(A,B)}{|A|.|B|} = n imes c.$$

Hence result.

Idea is to use this eigenvector to determine partition, e.g., based on sign of entries. Use the ratio-cut measure to actually determine where to split.

$Normalized\ cuts\ [Shi-Malik,2000]$

lacksquare Recall notation $w(X,Y) = \sum_{x \in X, y \in Y} w(x,y)$ - then define:

$$\operatorname{ncut}(A,B) = rac{cut(A,B)}{w(A,V)} + rac{cut(A,B)}{w(B,V)}$$

- ightharpoonup Goal is to avoid small sets A, B
- $ilde{m{\omega}}$ What is $m{w}(m{A},m{V})$ in the case when $m{w}_{ij} == 1$?
- \triangleright Let x be an indicator vector:

$$x_i = \left\{egin{array}{ll} 1 & if & i \in A \ 0 & if & i \in B \end{array}
ight.$$

lacksquare Recall that: $x^T L x = \sum_{ij} w_{ij} |x_i - x_j|^2$

➤ Therefore:

$$egin{align} cut(A,B) &= \sum_{x_i=1,x_j=0} w_{ij} = x^T L x \ w(A,V) &= \sum_{x_i=1} d_i = x^T W 1 = x^T D 1 \ w(B,V) &= \sum_{x_i=0} d_j = (1-x)^T W 1 = (1-x)^T D 1 \ \end{pmatrix}$$

➤ Goal now: to minimize ncut

$$\min_{A,B} \mathsf{ncut}(A,B) = \min_{x_i \in \{0,1\}} rac{x^T L x}{x^T D x} + rac{x^T L x}{(1-x)^T D x}$$

Let

$$eta = rac{w(A,V)}{w(B,V)} = rac{x^TD1}{(1-x)^TD1} \ y = x - eta(1-x)$$

➤ Then we need to solve:

$$\min_{egin{array}{ll} y_i \ \{0,-eta\} \end{array}} & rac{oldsymbol{y}^T L oldsymbol{y}}{oldsymbol{y}^T D oldsymbol{y}} \ ext{Subject to} & oldsymbol{y}^T D oldsymbol{1} = oldsymbol{0} \ \end{aligned}$$

 \rightarrow + Relax \rightarrow need to solve Generalized eigenvalue problem

$$Ly = \lambda Dy$$

- $m y_1=1$ is eigenvector associated with eigenvalue $m \lambda_1=0$
- $ightharpoonup y_2$ associated with second eigenvalue solves problem.

A few properties

Show that

$$ncut(A,B) = \sigma \times \frac{cut(A,B)}{w(A,V) \times w(B,V)}$$

where σ is a constant

How do ratio-cuts and normalized cuts compare when the graph is d-regular (same degree for each node).

Extension to more then 2 clusters

- Just like graph partitioning we can:
- 1. Apply the method recursively [Repeat clustering on the resulted parts]
- 2. or compute a few eigenvectors and run K-means clustering on these eigenvectors to get the clustering.

$Application:\ Image\ segmentation$

- First task: obtain a graph from pixels.
- Common idea: use "Heat kernels"
- Let $F_j =$ feature value (e.g., brightness), and Let $X_j =$ spatial position.

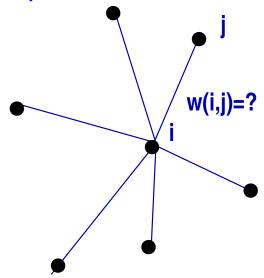
Then define

$$w_{ij} = e^{rac{-\|F_i - F_j\|^2}{\sigma_I^2}} imes \left\{ egin{array}{l} e^{rac{-\|X_i - X_j\|^2}{\sigma_X^2}} \ 0 & ext{else} \end{array}
ight. egin{array}{l} e^{rac{-\|X_i - X_j\|^2}{\sigma_X^2}} \ 0 & ext{else} \end{array}
ight.$$

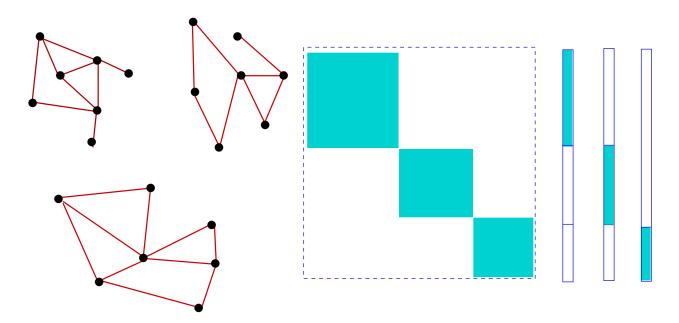
Sparsity depends on parameters

Spectral clustering: General approach

- **1** Given: Collection of data samples $\{x_1, x_2, \cdots, x_n\}$
- 2 Build a similarity graph between items



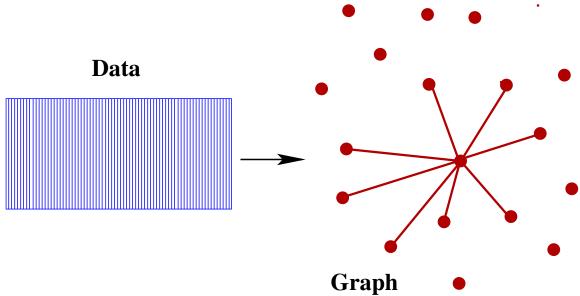
- 3 Compute (smallest) eigenvector (s) of resulting graph Laplacean
- 4 Use k-means on eigenvector (s) of Laplacean
- For Normalized cuts solve generalized eigen problem.



 \triangleright Alg. Multiplicity of eigenvalue zero = # connected components.

Building a nearest neighbor graph

Question: How to build a nearest-neighbor graph from given data?



- Will demonstrate the power of a divide a conquer approach combined with the Lanczos algorithm.
- Note: The Lanczos algortithm will be covered in detail later

Recall: Two common types of nearest neighbor graphs

Edges consist of pairs (x_i,x_j) such that $ho(x_i,x_j) \leq \epsilon$

kNN graph: Nodes adjacent to x_i are those nodes x_ℓ with the k with smallest distances $ho(x_i,x_\ell)$.

- ightharpoonup ϵ -graph is undirected and is geometrically motivated. Issues: 1) may result in disconnected components 2) what ϵ ?
- \triangleright kNN graphs are directed in general (can be trivially fixed).
- \triangleright **k**NN graphs especially useful in practice.

Divide and conquer KNN: key ingredient

- ➤ Key ingredient is *Spectral bisection*
- lacksquare Let the data matrix $X=[x_1,\ldots,x_n]\in\mathbb{R}^{d imes n}$
- ➤ Each column == a data point.
- $m{\lambda}$ Center the data: $\hat{m{X}} = [\hat{m{x}}_1, \dots, \hat{m{x}}_n] = m{X} m{c}m{e}^T$ where $m{c} =$ centroid; $m{e} = m{ones}(m{d}, 1)$ (matlab)

Goal: Split \hat{X} into halves using a hyperplane.

Method: Principal Direction Divisive Partitioning D. Boley, '98.

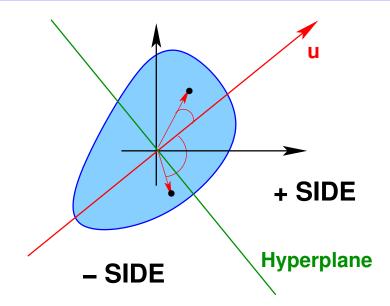
Idea: Use the (σ, u, v) = largest singular triplet of \hat{X} with:

$$u^T \hat{X} = \sigma v^T$$
.

– knn

Hyperplane is defined as $\langle u, x \rangle = 0$, i.e., it splits the set of data points into two subsets:

$$X_+ = \{x_i \mid u^T \hat{x}_i \geq 0\}$$
 and $X_- = \{x_i \mid u^T \hat{x}_i < 0\}.$



lacksquare Note that $u^T\hat{x}_i=u^T\hat{X}e_i=\sigma v^Te_i
ightarrow$

$$X_+ = \{x_i \mid v_i \geq 0\}$$
 and $X_- = \{x_i \mid v_i < 0\},$

where v_i is the i-th entry of v.

In practice: replace above criterion by

$$X_+ = \{x_i \mid v_i \geq \mathsf{med}(v)\} \ \& \ X_- = \{x_i \mid v_i < \mathsf{med}(v)\}$$

where med(v) == median of the entries of v.

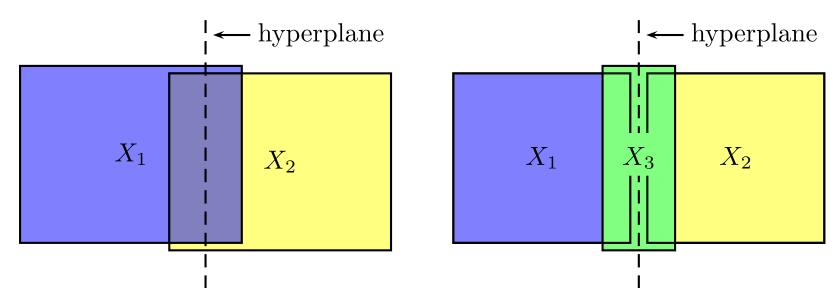
- For largest singular triplet (σ,u,v) of \hat{X} : use Golub-Kahan-Lanczos algorithm or Lanczos applied to $\hat{X}\hat{X}^T$ or $\hat{X}^T\hat{X}$
- ightharpoonup Cost (assuming s Lanczos steps) : O(n imes d imes s) ; Usually: d very small

– knn

Two divide and conquer algorithms

Overlap method: divide current set into two overlapping subsets X_1, X_2

Glue method: divide current set into two disjoint subsets X_1, X_2 plus a third set X_3 called gluing set.



The Overlap Method

 \triangleright Divide current set X into two overlapping subsets:

$$X_1 = \{x_i \mid v_i \geq -h_lpha(S_v)\}$$
 and $X_2 = \{x_i \mid v_i < h_lpha(S_v)\},$

- ullet where $S_v = \{|v_i| \mid i=1,2,\ldots,n\}.$
- ullet and $h_{lpha}(\cdot)$ is a function that returns an element larger than (100lpha)% of those in S_v .
- Rationale: to ensure that the two subsets overlap $(100\alpha)\%$ of the data, i.e.,

$$|X_1\cap X_2|=\lceil lpha |X|
ceil$$
 .

The Glue Method

Divide the set X into two disjoint subsets X_1 and X_2 with a gluing subset X_3 :

$$X_1 \cup X_2 = X$$
, $X_1 \cap X_2 = \emptyset$, $X_1 \cap X_3 \neq \emptyset$, $X_2 \cap X_3 \neq \emptyset$.

Criterion used for splitting:

$$X_1 = \{x_i \mid v_i \geq 0\}, \quad X_2 = \{x_i \mid v_i < 0\}, \ X_3 = \{x_i \mid -h_lpha(S_v) \leq v_i < h_lpha(S_v)\}.$$

Note: gluing subset X_3 here is just the intersection of the sets X_1, X_2 of the overlap method.

Approximate kNN Graph Construction: The Overlap Method

```
function G = k\mathsf{NN-Overlap}[X,k,\alpha]
     |\mathbf{if}|X| < n_k
          G \leftarrow \mathsf{Call}\ k\mathsf{NN-BruteForce}[X,k]
     else
          (X_1, X_2) \leftarrow \mathsf{Call} \; \mathsf{Divide-Overlap}[X, \alpha]
                G_1 \leftarrow \mathsf{Call}\ k\mathsf{NN}	ext{-}\mathsf{Overlap}[X_1,k,lpha]
                G_2 \leftarrow \mathsf{Call}\; k\mathsf{NN}	ext{-}\mathsf{Overlap}[X_2,k,lpha]
                G \leftarrow \mathsf{Call} \; \mathsf{Conquer}[G_1, G_2]
                Call Refine [G]
     EndIf
End
```

10-31 — knn

Approximate kNN Graph Construction: The Glue Method

```
G = k\mathsf{NN}	ext{-}\mathsf{Glue}[X,k,lpha]
     |\mathbf{if}|X| < n_k
           G \leftarrow \mathsf{Call}\ k\mathsf{NN-BruteForce}[X,k]
     else
           (X_1, X_2, X_3) \leftarrow \mathsf{Call} \; \mathsf{Divide}\text{-}\mathsf{Glue}X, \; \alpha
           G_1 \leftarrow \mathsf{Call}\; k\mathsf{NN}	ext{-}\mathsf{Glue}[X_1,k,lpha]
           G_2 \leftarrow \mathsf{Call}\; kNN-Glue[X_2,k,lpha]
           G_3 \leftarrow \mathsf{Call}\; k\mathsf{NN}	ext{-Glue}[X_3,k,lpha]
           G \leftarrow \mathsf{Call} \; \mathsf{Conquer}[G_1, G_2, G_3]
           Call Refine [G]
      EndIf
End
```

10-32 _____ – knn

Theorem The time complexity for the overlap method is

$$T_{\circ}(n)=\Theta(dn^{t_{\circ}}),$$

where:

$$t_{ ext{o}} = \log_{2/(1+lpha)} 2 = rac{1}{1 - \log_2(1+lpha)}.$$

Theorem The time complexity for the glue method is

$$T_{
m g}(n) = \Theta(dn^{t_{
m g}}/lpha),$$

where t_g is the solution to the equation: $\frac{2}{2t} + \alpha^t = 1$.

Example: When $\alpha = 0.1$, then $t_{\rm o} = 1.16$ while $t_{\rm g} = 1.12$.

Reference:

Jie Chen, Haw-Ren Fang and YS, "Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection" JMLR, vol. 10, pp. 1989-2012 (2009).