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Announcements

Midterm 1:
-No ch 15



Hidden Markov Model

To deal with information over time, we used
a hidden Markov model:

Often, we want more than a single variable
and/or evidence for our problem
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Hidden Markov Model

We could always just cluster all evidence
and all non-evidence to fit the HMM

However, this would lead to an exponential
amount of calculations/table size
(as the cluster would have to track every
combination of variables)

Rather, it is often better to relax our HMM
assumptions and expand the network



Dynamic Bayesian Network

This more general representation is called
a dynamic Bayesian network

Key:      =evidence,          =non-evidence
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Unfortunately, it is harder to compute a 
“filtered” message in this new network

We could still follow the same process:
1. Use t

0
 to compute t

1
, add evidence at t

1

2. Use t
2
 to compute t

2
, add evidence at t

2

3. (continue)

(Similar to our “forward message” in HMMs)

Dynamic Bayesian Network



The process is actually very similar to variable
elimination (with factors)

You have a factor for each variable and 
combine them to get the next step, then you 
sum out the previous step

Unfortunately, even with this “efficient”
approach, it is still O(dn+k), where d=domain
size (2 if T/F), k=num parents, n=num var

Dynamic Bayesian Network



If our network is large, finding the exact
probabilities is infeasible

Instead, we will use something similar to
likelihood weighting called particle filtering

This will estimate the filtered probability
(i.e.             ) using the previous estimate
(i.e.                   )... and then repeating

Particle Filtering



Particle filtering algorithm:
- Sample to initialize t=0 based on P(x

0
) with

N sample “particles”
- Loop until you reach t you want:

(1) Sample to apply transition from t-1:
each particle samples to decide where go

(2) Weight samples based on evidence:
Weight of particle in state x is P(e|x)

(3) Resample N particles based on weights:
P(particle in x) = sum w in x / total sum w

Particle Filtering



Particle filtering algorithm:
- Sample to initialize t=0 based on P(x

0
) with

N sample “particles”
- Loop until you reach t you want:

Particle Filtering



Although the algorithm is supposed to be run 
in a more complex network... lets start small

Let’s do N=100 particles

First we sample randomly to assign all 100
particles T/F in X
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For each particle that is T is X
0
:

60% chance to be T in X
1
, 40% F in X

1

For each particle that is F is X
0
:

90% chance to be T in X
1
, 10% F in X
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Then apply evidence weight, since ¬e
1
: 

T in X
1
 weighted as 0.7

F in X
1
 weighted as 0.2

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=78

X
1

F=22

X
2

X
3



Resample X1 based on weight & counts:
Total weight = 78*0.7 + 22*0.2 = 59
Weight in T samples = 78*0.7 = 54.6
Resample as T = 54.6/59 = 92.54%
(100 samples still)
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Start process again... first transition
For each particle:
X

1
 T: 60% chance to be T in X

2
, 40% F in X

2

X
1
 F: 90% chance to be T in X

2
, 10% F in X
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Weight evidence (same evidence as last time,
so same weight):
T has w=P(¬e

2
|x

2
) = 0.7

F has w=P(¬e
2
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Resample:
Total weight = 60*0.7 + 40*0.2 = 50
T weight = 60*0.7 = 42
P(sample T in X

2
) = 42/50 = 0.84
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You do X
3
!

(Rather than “sampling” just round to nearest
if you want to check your work with here)
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You should get:
(1) 65/35
(2) w for T = 0.3, W for F = 0.8
(3) 41/59
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Why does it work?

Each step computes the next “forward”
message in filtering, so we can use induction

If one forward message is done right, they 
should all be approximately correct

(Base case is trivial as P(x
0
) is directly

sampled, so should be approximate correct)

Particle Filtering



We compute the probabilities as:

(above is our inductive hypothesis)

Particle Filtering

Step (3) should look
a lot like normalize



Biggest real world simplifications?

Real World Complications



Biggest real world simplifications?

The sensors are only considered to be
“uncertain”, but quite often they fail

Temporarily failures (i.e. incorrect sensor 
readings for a few steps) can be handled by
ensuring the transition is high enough

(i.e. P(reading = 0 | reading = valid) = 0.01)

Real World Complications

Assume 0 is a sensor failure



This can handle cases where there is a brief
moment of failure: 

Real World Complications
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To handle cases where the sensor completely
fails, you can add another variable

This new variable should have a small chance
of going “false” and when false, it will always
stay there and give bad readings

You can then ask the network which variable
is more likely to be true, and judge off of that

Real World Complications



 

Real World Complications
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