
Particle Filter
(Ch. 15)

Announcements

Midterm 1:
-No ch 15

Hidden Markov Model

To deal with information over time, we used
a hidden Markov model:

Often, we want more than a single variable
and/or evidence for our problem

X
0

X
1

X
2

X
3

X
4

e
1

e
2

e
3

e
4

...
P(x

t+1
|x

t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

Hidden Markov Model

We could always just cluster all evidence
and all non-evidence to fit the HMM

However, this would lead to an exponential
amount of calculations/table size
(as the cluster would have to track every
combination of variables)

Rather, it is often better to relax our HMM
assumptions and expand the network

Dynamic Bayesian Network

This more general representation is called
a dynamic Bayesian network

Key: =evidence, =non-evidence

A
0

B
0

C
0

A
1

B
1

C
1

d
1

e
1

A
2

B
2

C
2

d
2

e
2

A
3

B
3

C
3

d
3

e
3

Unfortunately, it is harder to compute a
“filtered” message in this new network

We could still follow the same process:
1. Use t

0
 to compute t

1
, add evidence at t

1

2. Use t
2
 to compute t

2
, add evidence at t

2

3. (continue)

(Similar to our “forward message” in HMMs)

Dynamic Bayesian Network

The process is actually very similar to variable
elimination (with factors)

You have a factor for each variable and
combine them to get the next step, then you
sum out the previous step

Unfortunately, even with this “efficient”
approach, it is still O(dn+k), where d=domain
size (2 if T/F), k=num parents, n=num var

Dynamic Bayesian Network

If our network is large, finding the exact
probabilities is infeasible

Instead, we will use something similar to
likelihood weighting called particle filtering

This will estimate the filtered probability
(i.e.) using the previous estimate
(i.e.)... and then repeating

Particle Filtering

Particle filtering algorithm:
- Sample to initialize t=0 based on P(x

0
) with

N sample “particles”
- Loop until you reach t you want:

(1) Sample to apply transition from t-1:
each particle samples to decide where go

(2) Weight samples based on evidence:
Weight of particle in state x is P(e|x)

(3) Resample N particles based on weights:
P(particle in x) = sum w in x / total sum w

Particle Filtering

Particle filtering algorithm:
- Sample to initialize t=0 based on P(x

0
) with

N sample “particles”
- Loop until you reach t you want:

Particle Filtering

Although the algorithm is supposed to be run
in a more complex network... lets start small

Let’s do N=100 particles

First we sample randomly to assign all 100
particles T/F in X

0

X
0

X
1

X
2

X
3

¬e
1

¬e
2

e
3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

For each particle that is T is X
0
:

60% chance to be T in X
1
, 40% F in X

1

For each particle that is F is X
0
:

90% chance to be T in X
1
, 10% F in X

1

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=?
X

1

F=?

X
2

X
3

Then apply evidence weight, since ¬e
1
:

T in X
1
 weighted as 0.7

F in X
1
 weighted as 0.2

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=78

X
1

F=22

X
2

X
3

Resample X1 based on weight & counts:
Total weight = 78*0.7 + 22*0.2 = 59
Weight in T samples = 78*0.7 = 54.6
Resample as T = 54.6/59 = 92.54%
(100 samples still)

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=78

X
1

F=22

X
2

X
3w=0.7

w=0.2

Start process again... first transition
For each particle:
X

1
 T: 60% chance to be T in X

2
, 40% F in X

2

X
1
 F: 90% chance to be T in X

2
, 10% F in X

2

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=95

X
1

F=5

X
2

X
3

Weight evidence (same evidence as last time,
so same weight):
T has w=P(¬e

2
|x

2
) = 0.7

F has w=P(¬e
2
|¬x

2
) = 0.2

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=95

X
1

F=5
T=60

X
2

F=40

X
3

Resample:
Total weight = 60*0.7 + 40*0.2 = 50
T weight = 60*0.7 = 42
P(sample T in X

2
) = 42/50 = 0.84

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=95

X
1

F=5
T=60

X
2

F=40

X
3w=0.7

w=0.2

You do X
3
!

(Rather than “sampling” just round to nearest
if you want to check your work with here)

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=95

X
1

F=5
T=82

X
2

F=18

X
3

evidence positive this time

You should get:
(1) 65/35
(2) w for T = 0.3, W for F = 0.8
(3) 41/59

¬e
1 ¬e

2
e

3

P(x
t+1

|x
t
) 0.6

P(x
t+1

|¬x
t
) 0.9

P(e
t
|x

t
) 0.3

P(e
t
|¬x

t
) 0.8

P(x
0
) 0.5

Particle Filtering

T=48
X

0

F=52
T=95

X
1

F=5
T=82

X
2

F=18
T=41

X
3

F=59

Why does it work?

Each step computes the next “forward”
message in filtering, so we can use induction

If one forward message is done right, they
should all be approximately correct

(Base case is trivial as P(x
0
) is directly

sampled, so should be approximate correct)

Particle Filtering

We compute the probabilities as:

(above is our inductive hypothesis)

Particle Filtering

Step (3) should look
a lot like normalize

Biggest real world simplifications?

Real World Complications

Biggest real world simplifications?

The sensors are only considered to be
“uncertain”, but quite often they fail

Temporarily failures (i.e. incorrect sensor
readings for a few steps) can be handled by
ensuring the transition is high enough

(i.e. P(reading = 0 | reading = valid) = 0.01)

Real World Complications

Assume 0 is a sensor failure

This can handle cases where there is a brief
moment of failure:

Real World Complications

Position
0

Speed
0

GPS
1

Spin
1

Position
1

Speed
1

Position
2

Speed
2

Spin
2

GPS
2

Position
3

Speed
3

Spin
3

GPS
3

To handle cases where the sensor completely
fails, you can add another variable

This new variable should have a small chance
of going “false” and when false, it will always
stay there and give bad readings

You can then ask the network which variable
is more likely to be true, and judge off of that

Real World Complications

Real World Complications

Position
0

Speed
0

GPS
1

Spin
1

Position
1

Speed
1

Position
2

Speed
2

Spin
2

GPS
2

SensOK
0

SensOK
1

SensOK
2

Position
3

Speed
3

Spin
3

GPS
3

SensOK
3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

