Hidden Markov Models (Ch. 15) **BABE, MY LIFE IS A MARKOV CHAIN GIVEN THE PRESENT, THE FUTURE DOES NOT DEPEND ON THE PAST**

Announcements

Homework 2 posted Programing: -Python (preferred) -Java -Matlab

Markov... chains?

Recap, Markov property: $P(x_{n+1}|x_n, x_{n-1}, x_{n-2} \cdots x_0) = P(x_{n+1}|x_n)$

(Next state only depends on current state)

For Gibbs sampling, we made a lot of samples using the Markov property (since this is 1-dimension, it looks like a "chain")

Markov... chains?

For the next bit, we will still have a "Markov" and uncertainty (i.e. probabilities)

However, we will add partial-observability (some things we cannot see)

These are often called <u>Hidden Markov Models</u> (not "chains" because they won't be 1D... w/e)

For Hidden Markov Models (HMMs) often: (1) E = the evidence (2) X = the hidden/not observable part

We assume the hidden information is what causes the evidence (otherwise quite easy)

If you squint a bit, this is actually a Bayesian network as well (though can go on for a while)

For simplicity's sake, we will assume the probabilities of going to the right (next state) and down (seeing evidence) are the same for all subscripts (typically "time")

Our example will be: sleep deprivation

So variable X_t will be if a person got enough sleep on day t

This person is not you, but you see them every day, and you can tell if their eyes are bloodshot (this is E₁)

As we will be dealing with quite a few variables, we will introduce some notation:

 $E_{1:t} = E_1, E_2, E_3, \dots E_t$ (similarly for $X_{0:t}$) So $P(E_{1:t}) = P(E_1, E_2, E_3, \dots E_t)$, which is normal definition of commas like P(a,b)

We will assume we only know $E_{1:t}$ (and X_0) and want to figure out X_k for various k

Quick Bayesian network recap:

 $P(a, \neg b, c, \neg d) = P(\neg d | a, \neg b, c) P(c | \neg b, a) P(\neg b | a) P(a)$ $= P(\neg d | \neg b, c) P(c | \neg b) P(\neg b | a) P(a)$ $= \prod_{x \in Network} P(x | Parents(x))$

Used fact tons in our sampling...

So in this Bayesian network (bigger): Most $P(X_{0:t}, E_{1:t}) = P(X_0) \prod_{i=1}^{t} P(X_i | X_{i-1}) P(E_i | X_i)$ Explanation Typically, use above to compute four things:

FilteringPredictionSmoothingMLEV $P(x_t|e_{1:t})$ $P(x_{t+k}|e_{1:t})$ $P(x_k|e_{1:t}), k < t$ $P(x_{1:t}|e_{1:t})$

All four of these are actually quite similar, and you can probably already find them

The only difficulty is the size of the Bayesian network, so let's start small to get intuition:

 $P(x_0) = 0.5$

X

 $P(X_{t+1}|\neg X_{t}) = 0.9$

 $P(X_{t+1}|X_t)$

0.6

X,

e₁

How can you find $P(x_1 | \neg e_1)$? (this is a simple Bays-net) $P(e_t | x_t) = P(X_0) \prod^t P(X_i | X_{i-1}) P(E_i | X_i)$

$$P(x_{0}) = \alpha P(x_{1}, \neg e_{1}) = \alpha P(x_{1}, \neg e_{1})$$

$$= \alpha \sum_{x_{0}} P(x_{0}, x_{1}, \neg e_{1})$$

$$= \alpha \sum_{x_{0}} P(x_{0}, x_{1}, \neg e_{1})$$

$$= \alpha \sum_{x_{0}} P(x_{0}) P(x_{1}|x_{0}) P(\neg e_{1}|x_{1})$$

$$= \alpha P(\neg e_{1}|x_{1}) \sum_{x_{0}} P(x_{0}) P(x_{1}|x_{0})$$

$$= \alpha (1 - 0.3) \cdot (0.5 \cdot 0.6 + 0.5 \cdot 0.9)$$

$$\approx 0.05\alpha$$
So normalized gives: $P(x_{1}|\neg e_{1}) \approx 0.913$

91% chance I slept last night, given today I didn't have bloodshot eyes

Find: $P(x_2 | \neg e_1, \neg e_2)$

 $P(x_2 | \neg e_1, \neg e_2) = \alpha P(x_2, \neg e_1, \neg e_2)$

$$= \alpha \sum_{x_0} \sum_{x_1} P(x_0, x_1, x_2 \neg e_1, \neg e_2)$$

Double sum?!?! Double... for loop..?

 $= \alpha \sum_{x_0} \sum_{x_1} P(x_0) P(x_1 | x_0) P(\neg e_1 | x_1) P(x_2 | x_1) P(\neg e_2 | x_2)$

Just computed this!
$$= \alpha \sum_{x_1} \sum_{x_0} P(\neg e_2 | x_2) P(x_2 | x_1) P(\neg e_1 | x_1) P(x_0) P(x_1 | x_0)$$

It is $P(x_1 | e_1)$

$$= \alpha P(\neg e_2 | x_2) \sum_{x_1} P(x_2 | x_1) P(\neg e_1 | x_1) \sum_{x_0} P(x_0) P(x_1 | x_0)$$

 $= \alpha P(\neg e_2 | x_2) \left(P(x_2 | x_1) \cdot 0.913 + P(x_2 | \neg x_1) \cdot (1 - 0.913) \right)$ = $\alpha (1 - 0.3) (0.6 \cdot 0.913 + 0.9 \cdot (1 - 0.913))$

 $\approx 0.438 \alpha$

... after normalizing you should get: ≈ 0.854

$P(x_2 \neg e_1, \neg e_2)$	$) = \alpha P(x_2, \neg e_1, \neg e_2)$	Double sum?!?! Double for loop?
	$= \alpha \sum \sum P(x_0, x_1, x_2 \neg e_1, \neg e_2)$	
	$x_0 x_1$	
$= \alpha \sum \sum P(x_0) P(x_1 x_0) P(\neg e_1 x_1) P(x_2 x_1) P(\neg e_2 x_2)$		
$\begin{array}{ccc} x_0 & x_1 \\ \hline \end{array}$		
$= \alpha \sum_{x_1} \sum_{x_0} P(\neg e_2 x_2) P(x_2 x_1) P(\neg e_1 x_1) P(x_0) P(x_1 x_0)$ It is $P(x e_1)$		
change to $\neg x_2$ r_1 x_0		
$P(\neg x_2 \neg e_1, \neg e_2)$	$= \alpha P(\neg e_2 x_2) (P(x_2 x_1) \cdot 0.913 + P(x_2 x_2)) (P(x_2 x_2) \cdot 0.913 + P(x_2 x_2)) (P(x_2 x_$	$x_2 \neg x_1) \cdot (1 - 0.913)$
≈0.075α	$= \alpha (1 - 0.3)(0.6 \cdot 0.913 + 0.9 \cdot (1 - 0.9))(0.6 \cdot 0.913 + 0.9))(0.6 \cdot 0.913 + 0.9)(0.6 \cdot 0.913 + 0.9))(0.6 \cdot 0.9))(0$.913))
	$pprox 0.438 \alpha$	
after normalizing you should get: ≈0.854		

In general:

$$P(x_t|e_{1:t}) = P(x_t|e_t, e_{1:t-1})$$

$$= \alpha P(x_t, e_t, e_{1:t-1})$$

$$= \alpha P(x_t, e_t|e_{1:t-1}) \quad \text{(Note: different } \alpha)$$

$$= \alpha P(e_t|x_t, e_{1:t-1}) P(x_t|e_{1:t-1})$$

$$= \alpha P(e_t|x_t, e_{1:t-1}) \sum_{x_{t-1}} \left(P(x_t, x_{t-1}|e_{1:t-1}) \right)$$

$$= \alpha P(e_t|x_t, e_{1:t-1}) \sum_{x_{t-1}} \left(P(x_t|x_{t-1}, e_{1:t-1}) P(x_{t-1}|e_{1:t-1}) \right)$$

$$= \alpha P(e_t|x_t) \sum_{x_{t-1}} \left(P(x_t|x_{t-1}) P(x_{t-1}|e_{1:t-1}) \right)$$

In general:

$$f(t) = P(x_t | e_t, e_{1:t-1})$$

$$= \alpha P(x_t, e_t, e_{1:t-1})$$

$$= \alpha P(x_t, e_t | e_{1:t-1})$$
(Note: different α)

$$= \alpha P(e_t | x_t, e_{1:t-1}) P(x_t | e_{1:t-1})$$

$$= \alpha P(e_t | x_t, e_{1:t-1}) \sum_{x_{t-1}} \left(P(x_t, x_{t-1} | e_{1:t-1}) \right)$$

$$= \alpha P(e_t | x_t, e_{1:t-1}) \sum_{x_{t-1}} \left(P(x_t | x_{t-1}, e_{1:t-1}) P(x_{t-1} | e_{1:t-1}) \right)$$

$$= \alpha P(e_t | x_t) \sum_{x_{t-1}} \left(P(x_t | x_{t-1}, e_{1:t-1}) P(x_{t-1} | e_{1:t-1}) \right)$$
Actually, this is just a recursive function

So we can compute $f(t) = P(x_t|e_{1:t})$: $f(t) = \alpha P(e_t|x_t) \sum_{x_{t-1}} \left(P(x_t|x_{t-1})f(t-1) \right)$ actually an array, as you need both T/F for sum(or 1-) Of course, we don't *actually* want to do this recursively... rather with dynamic programing

Start with $f(0) = P(x_0)$, then use this to find f(1)... and so on (can either store in array, or just have a single variable... like Fibonacci)

How would you find "prediction"?

Probably best to go back to the example: What is chance I sleep on day 3 given, you saw me without bloodshot eyes on day 1&2?

 $P(x_3 | e_1, e_2) = ???$

 $P(x_3 | \neg e_1, \neg e_2) = \alpha P(x_3, \neg e_1, \neg e_2)$

$$= \alpha \sum_{x_0} \sum_{x_1} \sum_{x_2} P(x_0, x_1, x_2, x_3, \neg e_1, \neg e_2)$$

$$= \alpha \sum_{x_0} \sum_{x_1} \sum_{x_2} P(x_0) P(x_1 | x_0) P(\neg e_1 | x_1) P(x_2 | x_1) P(e_2 | x_2) P(x_3 | x_2)$$

$$= \alpha \sum_{x_2} P(x_3 | x_2) P(e_2 | x_2) \sum_{x_1} P(x_2 | x_1) P(\neg e_1 | x_1) \sum_{x_0} P(x_0) P(x_1 | x_0)$$

$$= \alpha \sum_{x_2} P(x_3 | x_2) P(x_2 | \neg e_1, \neg e_2) \quad \text{whew...}$$

$$= \alpha (0.6 \cdot 0.854 + 0.9 \cdot (1 - 0.854))$$

$$\approx 0.644\alpha$$

Furns out that $P(\neg x_2 | \neg e_1, \neg e_2) \approx 0.356\alpha$, so $\alpha = 1$

Day 4?

 $P(x_4 | e_1, e_2) = ???$

$$P(x_{4}|\neg e_{1},\neg e_{2}) = \alpha P(x_{4},\neg e_{1},\neg e_{2})$$

$$= \alpha \sum_{x_{0}} \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} P(x_{0},x_{1},x_{2},x_{3},x_{4},\neg e_{1},\neg e_{2})$$

$$= \alpha \sum_{x_{0}} \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} P(x_{0})P(x_{1}|x_{0})P(\neg e_{1}|x_{1})P(x_{2}|x_{1})P(e_{2}|x_{2})P(x_{3}|x_{2})P(x_{4}|x_{3})$$

$$= \alpha \sum_{x_{3}} P(x_{4}|x_{3}) \sum_{x_{2}} P(x_{3}|x_{2})P(e_{2}|x_{2}) \sum_{x_{1}} P(x_{2}|x_{1})P(\neg e_{1}|x_{1}) \sum_{x_{0}} P(x_{0})P(x_{1}|x_{0})$$

$$= \alpha \sum_{x_{3}} P(x_{4}|x_{3}) P(x_{3}|e_{1},e_{2}) \qquad \dots \text{think I see}$$

$$= \alpha (0.6 \cdot 0.644 + 0.9 \cdot (1 - 0.644)) \qquad \text{a pattern here}$$

$$\approx 0.707\alpha$$
Turns out that $P(\neg x_{4}|\neg e_{1},\neg e_{2}) \approx 0.293\alpha$, so $\alpha = 1$
(α always 1 now, as can move into red box)

We'll save the other two for next time...