
Approximate inference (Ch. 14)

Likelihood Weighting

In LW, say we generated 2 samples:
[a] : w = 1, [¬a], w=0.2

If we did rejection sampling, we need about 5
¬a to actually get a ‘b’, so 10 samples:
[a,b], [a,b], [a,b], [a,b], [a,b],
[¬a,b], [¬a,¬b], [¬a,¬b], [¬a,¬b], [¬a,¬b]

A B P(a) 0.5

P(b|a) 1

P(b|¬a) 0.2

Likelihood Weighting

Since we normalize, all we care about is the
ratio between [a,b] and [¬a,b]

In likelihood weighting, the weights create
the correct ratio as “[¬a,b] : w=0.2” represents
that you would actually need 5 of these to get
a “true” sample

A B P(a) 0.5

P(b|a) 1

P(b|¬a) 0.2

Likelihood Weighting

I mentioned this in the algorithm, but did not
do an example: weight’s product is cumulative

So if we want to find P(a|b,c), say 3 samples:
[a] : w = 0.4, [a] w= 0.4*1 = 0.4
[¬a] : w = 0.01*0.3 = 0.003

A

b

c

P(a) 0.2

P(b|a) 0.4

P(b|¬a) 0.01

P(c|a,b) 1

P(c|a,¬b) 0.7

P(c|¬a,b) 0.3

P(c|¬a,¬b) 0

Markov Chain

Today we will take a slightly different
approach called Gibbs sampling

In likelihood weighting: if we wanted P(a,b|c),
we would generate both ‘a’ and ‘b’ in loop

For Gibbs sampling: when finding P(a,b|c),
we will only change ‘a’ or ‘b’ individually
(rather than both at the same time)

Markov Chain

Gibbs sampling uses a Markov chain (since
we use random numbers to generate samples,
we call it Monte-Carlo Markov chain)

A Markov chain can be thought of as a
transition between states:

This transition says
if you are in ‘C’ you
have a 50% chance
to stay in ‘C’ next time

Markov Chain

More generally, anything that is “memoryless”
is a type of Markov chain:

This property is simply: “Where you end up
next only depends on where you currently are”

This is P(C→C)=0.5
Is Markov because
only uses current state
(C) not more previous
states (like (B,C))

Markov Chain

We are going to change one value in the
Bay net at a time to make a Markov chain:

After making a long Markov chain by having
one variable change per step, we will average
the states to find the probability we want

a
b

¬c

d

State/time: x
n

P([a,b,¬c,d] →[a,¬b,¬c,d])

a
¬b

¬c

d

State/time: x
n+1

Gibbs sampling

Gibbs sampling algorithm:
- Set evidence variables (i.e. b=true if P(a|b))
- Randomly initialize everything else
- Loop a lot:

(1) Pick a random non-evidence variable
(2) Generate random number to determine

if T/F (based on Markov blanket)
- Record tally/count of resulting state

- Calculate statistics

Gibbs sampling

Let’s use the Bayesian network above to find:
A D A C C

Using rand: 0.225, 0.108, 0.628, 0.781, 0.117

A
B

C

D

P(a) 0.1

P(b|a) 0.2
P(b|¬a) 0.3

P(c|b) 0.4
P(c|¬b) 0.5

P(d|b,c) 0.25
P(d|b,¬c) 1.0
P(d|¬b,c) 0.15
P(d|¬b,¬c) 0.05

Gibbs sampling

Have to set evidence (b=true), but then
randomly set a, c and d to [true, true, false]

A
b

C

D

a
b

c

¬d

Gibbs sampling

(1) Pick a random non-evidence variable
(i.e. anything other than ‘b’)

... let’s randomly pick A

(2) Randomly change A based off Markov
Blanket:

¬a
b

c

¬d

Rand = 0.225
set a=false as
0.225 > 0.069

Gibbs sampling

(1) Pick a random non-evidence variable
(i.e. anything other than ‘b’)

... let’s randomly pick A

(2) Randomly change A based off Markov
Blanket:

¬a
b

c

¬d

Rand = 0.225
set a=false as
0.225 > 0.069

Keep tally

[¬a,c,¬d]

Gibbs sampling

(1) Randomly pick D (from A, B, D)

(2) Randomly change D based off Markov
Blanket:

¬a
b

c

d

Rand = 0.108
set d=true as
0.108 < 0.25

[¬a,c,¬d]
[¬a,c,d]

Gibbs sampling

(1) Randomly pick A (from A, B, D)

(2) Randomly change A based off Markov
Blanket:

¬a
b

c

d

Rand = 0.628
set a=false as
0.628 < 0.069

[¬a,c,¬d]
[¬a,c,d]
[¬a,c,d]

Gibbs sampling

(1) Randomly pick C (from A, B, D)

(2) Randomly change C based off Markov
Blanket:

¬a
b

¬c

d

Rand = 0.781
set c=false as
0.781 > 0.143

[¬a,c,¬d]
[¬a,c,d]
[¬a,c,d]

<P(c), P(¬c)> = <α 0.25(0.4), α 1(0.6)>
=<0.143, 0.857>

[¬a,¬c,d]

Gibbs sampling

(1) Randomly pick C (from A, B, D)

(2) Randomly change C based off Markov
Blanket:

¬a
b

c

d

Rand = 0.117
set c=true as
0.117 < 0.143

[¬a,c,¬d]
[¬a,c,d]
[¬a,c,d]

<P(c), P(¬c)> = <α 0.25(0.4), α 1(0.6)>
=<0.143, 0.857>

[¬a,¬c,d]
[¬a,c,d]

Gibbs sampling

Now we have our five samples...

We would just compute P(a,c,d|b) as:
count(a,c,d)/totalSamples, so:

Obviously we should loop
more than 5 times, but this
should converge as long
as the Markov chain doesn’t
have two properties...

[¬a,c,¬d]
[¬a,c,d]
[¬a,c,d]
[¬a,¬c,d]
[¬a,c,d]

Gibbs sampling

For Gibbs sampling to work we need:

(1) Irreducibility: Every state reachable from
any other state in a finite number of steps

The above is not irreducible as if we start in
state 3 and go to state 4, we cannot ever leave

Gibbs sampling

For Gibbs sampling to work we need:

(2) Aperiodically: Cannot have a “periodic”
movement (always transition)

In the above Markov chain we will spend
half the time in state 1, it will always leave
in the next step

1 2

1.0

1.0

Formally:

time

at state i

Gibbs sampling

You try! Find: (initial=¬b,c)
Random node: B C B C C
Using rand: 0.081, 0.476, 0.134, 0.095, 0.875

A
B

C

D

P(a) 0.1

P(b|a) 0.2
P(b|¬a) 0.3

P(c|b) 0.4
P(c|¬b) 0.5

P(d|b,c) 0.25
P(d|b,¬c) 1.0
P(d|¬b,c) 0.15
P(d|¬b,¬c) 0.05

Gibbs sampling

Always [a, ¬d]
1. Pick B, P(b|a,c,¬d)=0.15>0.081, [b,c]
2. Pick C, P(c|a,b,¬d)=0.370<0.476, [b,¬c]
3. Pick B, P(b|a,¬c,¬d)=0<0.134, [¬b,¬c]
4. Pick C, P(c|a,¬b,¬d)=0.472>0.095, [¬b,c]
5. Pick C, P(c|a,¬b,¬d)=0.472<0.875, [¬b,¬c]

So P(b,c|a,¬d) = 0.2 P(b,¬c|a,¬d) = 0.2
P(¬b,c|a,¬d) = 0.2 P(¬b,¬c|a,¬d) = 0.4

Why Gibbs works

Notation:
π(x) = probability being in state x
e = “evidence”, thus we finding P(x|e)
 = all non-evidence except x

Example: Find P(a,c,d | b)

A
b

C

D

line/bar over x

e = ‘b’ always

if x = {a}, = {b,c}
if x = {b}, = {a,c}

Why Gibbs works

To understand why Gibbs sampling works,
we first need a bit more on Markov chains:

With the properties of irreducibility and
aperiodicity, we will converge to a
stationary distribution (i.e. stop changing)

(I will stop writing t’s)

prob to get next
state (e.g. [a,b,c])

prob change states
(you just did this)
(e.g. [¬a,b,c]→[a,b,c])prob in a state

 (e.g. [¬a,b,c])

Why Gibbs works

Thus we get:

If you think about probabilities as “flows”
then the flow into x’ is the sum of partial
(depending on P(x→x’)) flow from all other x

But the flow from x’ is also outgoing to other
states... so the stationary distribution has
equal “flow” on all of the probabilities

Why Gibbs works

One way way to satisfy in-flow=out-flow is
to simply say you must have equal flow
between pairs of nodes

From here it is enough to show that if you set:
π(x) = P(a,c,d|b), where x = {a,c,d}
P(x→x’) = P(x|MarkovBlanket(x))

... you will satisfy the stationary requirement

Why Gibbs works

In our P(a,c,d|b) example:

Thus we have our required property:

Why Gibbs works

In general:

Note:
Technically, when finding P(x→x’) we have all variables as
given, but we only use the Markov blanket as the other
variables are conditionally independent

Gibbs vs. Likelihood Weight

What are the differences (good and bad)
between this method (Gibbs) and the one
from last time (Likelihood Weighting)?

Gibbs vs. Likelihood Weight

Good:
- Will not ever generate a 0 weight sample
(as uses all evidence: P(c|a,b,d) not just
parents in LW: P(c|b))

Bad:
- Hard to tell when “converges” (no Law of
Large Numbers to help bound error)
- Transition more unlikely if large blanket (as
more probabilities multiplied = more variance)

Zzzzz...

The rest of the chapter both:
- Gives real-ish world examples to use algs.
- Shows other ways of solving that (in general)

not as good as using Bayesian networks

This is kinda boring so I will skip all except
the last part on “Fuzzy logic”

Fuzzy Logic

So far we have been saying things like:
A=true ... or ... OverAte=true

Fuzzy logic moves away from true/false and
instead makes these continuous variables, so:
OverAte=0.4 is possible

This is not a 40% chance you overate,
it is more like your stomach is 40% full
(a known fact, not a thing of chance)

Fuzzy Logic

You can define basic logic operators in
Fuzzy logic as well:
(A or B) = max(A,B)
(A and B) = min(A,B)
(¬A) = 1-(A)

... So if OverAte=0.4 and Desert=0.2
(OverAte or Desert) = 0.4

However, (Desert or ¬Desert)=0.8

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

