
Bayes Nets (Ch. 14)

Announcements

Homework 1 posted

Bayesian Network

A Bayesian network (Bayes net) is:
(1) a directed graph
(2) acyclic

Additionally, Bayesian networks are assumed
to be defined by conditional probability tables

(3) P(x | Parents(x))

We have actually used one of these before...

Bayesian Network

P(t|d) t ¬t

d 1 0

¬d 0.01 0.99

We had the following info (originally in
paragraph form rather than table)

P(d) d ¬d

0.001 0.999

Bayesian Network

P(t|d) t ¬t

d 1 0

¬d 0.01 0.99

We had the following info (originally in
paragraph form rather than table)

If you remember the cause/effect relationship:

P(d) d ¬d

0.001 0.999

Disease Test
affects

Bayesian Network

P(t|d) t ¬t

d 1 0

¬d 0.01 0.99

We had the following info (originally in
paragraph form rather than table)

If you remember the cause/effect relationship:

... this is, in fact, a Bayesian Network

P(d) d ¬d

0.001 0.999

Disease Test (1) directed
(2) acyclic

(3) Test’s parent is Disease in graph

affects

Bayesian Network

P(t|d) t ¬t

d 1 0

¬d 0.01 0.99

Using these tables we can manipulate the
probability to find whatever we want:

P(d) d ¬d

0.001 0.999

Disease Test

P(have disease and test would find)

Chain Rule

You are probably sick of the last example,
so let’s look at a more complex one:

Using the rules of conditional probability:

a
b

c

d

Chain Rule

Breaking down in this fashion:

... is called the chain rule, written generally as:

As code:
(no Greek)

p = 1
for i in range(1, n):
p *= prob(i, i-1, 1)

at end, p = P(x
1
, x

2
, ... x

n
)

def prob(of, given_from, given_to):

Conditional Independence

How is the above conflict with the definition
of a Bayesian network?

a
b

c

d

Conditional Independence

How is the above conflict with the definition
of a Bayesian network?
Bayesian networks only have tables for:

So we only know stuff like: not

a
b

c

d

not parent

Conditional Independence

It turns out (no coincidence), not an issue as:

... as ‘c’ and ‘a’ are conditionally independent
given ‘b’, so the info from ‘a’ can be dropped

There are two powerful rules for conditional
independence in Bayesian networks
... but the amount of given information differs:

(1) When ‘a’ is not a descendant of ‘c’
(2) No condition on ‘c’ child’s child’s child... in graph

Conditional Independence

Rule 1: When ‘c’ is not descendant of ‘a’
(Note: order matters between ‘a’ and ‘c’)

... when
So in this network:

... but as ‘a’ is a
descendant of ‘c’:

a

x c

y

z

(redundant information side note: P(a|b) = P(a|b, b))

Conditional Independence

Rule 2: no restriction (called Markov blanket)

... when

So in this network:

a

x c

y

z

parent(s)

child(ren)

child(ren)’s parent(s)

doesn’t matter

Conditional Independence

I have bad intuition on probability (in general),
but let’s try and see why the child’s parent
is needed in the Markov blanket

You might consume too many calories when
eating if you like the food or you were starved

desert

over eat

hungry

... or ... ?

Blind eating network:

Conditional Independence

I have bad intuition on probability (in general),
but let’s try and see why the child’s parent
is needed in the Markov blanket

You might consume too many calories when
eating if you like the food or you were starved

desert

over eat

hungry

... or ... ?

Blind eating network:

Conditional Independence

Assuming both liking the food and hunger
increase the chance of over eating

In both cases you know you over ate, so it is
more likely you were eating desert if you were
full than hungry (as hunger might be cause)

Chance that you ate desert,
knowing you overate and were hungry

Chance that you ate desert,
knowing you overate but were full

Conditional Independence

Book has a good picture of this:
Rule 2: Markov blanketRule 1: Non-descendants

X

Red = cond. independent, Blue = not cond. independent, White = given info, Green = P(x|stuff)

Conditional Independence

Coming back to this Bayesian network:

We only really need to use Rule #1 of
conditional independence to get:

... and we should have tables for each of these
by definition (3) of Bayesian networks

a
b

c

d

(chain rule)

Making Bayesian Networks

Thus you can get the probability P(a,b,c,d)
fairly easily using the chain rule (right order)
and conditional independence

Once you have P(a,b,c,d), it is pretty easy
to compute any other probability you want,
such as: P(a|b,c) or P(a, d)

Thus Bayesian networks store information
about any probability you could want

Making Bayesian Networks

In fact, a Bayesian network is both fully
expressive and does not contain redundancy

So you could put any numbers into the tables
(assuming they add to 1 and 0 < P(x) < 1)
and all probability rules will be followed

Unlike how P(a) = 0.2, P(b) = 0.3, P(a,b) = 0.1
does not follow the rules of probability

Making Bayesian Networks

So far, we have been building Bayesian
networks as parent=cause & child=effect

But this does not need to be the case
(it is just typically the best way)

In fact, there are multiple networks that can
represent the same information

cause effect

Making Bayesian Networks

... same as...

P(t|d) t ¬t

d 1 0

¬d 0.01 0.99

P(d) d ¬d

0.001 0.999

Disease Test

P(d|t) d ¬d

t 0.090992 0.909008

¬t 0 1

P(t) t ¬t
0.01099 0.98901

Disease Test

Making Bayesian Networks

If you have nodes/variables that you want to
make into a Bayesian network, do this:

1. Assign variables to X
1
, X

2
, ... X

n
 (any order)

2. for i = 1 to n:
2.1. Find minimal set of parents from X

i-1
,

X
i-2

, ... X
1
 such that

(i.e. non-descedent rule for cond. prob.)
2.2. Make table & edges from Parents(X

i
) to X

i

Making Bayesian Networks

Let’s consider the Study, Homework, Exam
situation from last time

Since we can choose these variables in any
order, let X

1
=Study, X

2
=Homework, X

3
=Exam

First loop iteration i=1, so we need to find:

... but when i=1,

... so no parents are needed to be found

Study Homework Exam

Making Bayesian Networks

Next loop iteration i=2, and again we find:

There are really two options:

As X
1
=Study and X

2
=Homework are not

independent, the first option is not possible

So we choose: Parents(X
2
) = {X

1
} and make a

table for P(X
2
|X

1
) and update graph: Study

HW

Making Bayesian Networks

Last iteration i=3, and again we find parents:

Parents(X
3
) = {X

2
, X

1
} would work

(this is the rule of conditional probability)

But this is not minimal, as Homework and
Exam are conditionally independent

So the minimal parent set is {X
1
} Study

HW... make a table for P(Exam|Study) Exam

Making Bayesian Networks

Let’s do this again, but switch the order:
X

1
 = Exam, X

2
 = Homework, X

3
=Study

i=1 loop iteration pretty trivial (no parents)
i=2 iteration finds minimal set of parents for
Homework, which is {Exam}
(only other node and it does effect Homework)

Exam

HW
Tables: P(e), P(h|e)

Making Bayesian Networks

When i=3, we add Study to the graph and see
if we can find some conditional independence:

However, both Exam and Homework affect
the probability that we Studied, so
Parents(Study) = {Exam, HW}

Exam

HWTables: P(e), P(h|e), P(s|e,h)
Study

Making Bayesian Networks

So depending on variable order we have:

... or ...

Exam

HW

Study

Study

HWExam
P(s) 0.1 P(h|s) 0.2

P(h|¬s) 0.3

P(e|s) 0.4

P(e|¬s) 0.5

random numbers

P(e) 0.49

P(h|e) 0.292

P(h|¬e) 0.288

P(s|e,h) 0.056944

P(s|¬e,h) 0.081633

P(s|e,¬h) 0.092219

P(s|¬e,¬h) 0.132231

Making Bayesian Networks

Like last time, the cause→effect direction is
more stable to remember (changes less)

We mentioned last time that storing a table
of P(a,b,c,d...) takes O(2n)

If you have at most k parents on the Bayesian
network, then it is actually O(n*2k)
(previous slide was k=2, as study had two
parents and thus required 4 entries in table)

Making Bayesian Networks

So choosing “cause” variables before “effect”
ones, you get:

1. More stable probabilities
(update fewer tables on changes)

2. Less memory used to store probabilties

Not to mention, finding P(effect|cause) is
often much easier to compute in the real world

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

