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I Robots quite often do not know everything
I about problem (uncertainty):
- partial observability

- non-deterministic actions

Representation

For example, if you were making a poker Al:
1. You cannot see the other player’s cards,
so you have to reason without that info
2. When you draw/exchange cards, you do
not know what new card you will get



Representation

One simple way is to use belief states and
I track each possible outcome

This is quite often too burdensome as:
1. Large number of possible states
2. Would need to plan/decide for each state
3. Possible that no single plan is guaranteed
to exist (very true in “games of chance”)

1 & 2 especially annoying for low probability



I We also need to reason on affects of actions or
I the info that we do have

Representation

Logic would be one possibility, but often does
not work well with uncertainty

Consider: your friend sat down next to you

and has wet hair... you guess they =~ g

got out of the shower recently  JA#*&H
WetHair = TookShower




Representation

This however is a bit 51mphst1c
WetHair = TookS hower T

There could be other reasons for wet halr
WetHair = TookShower V Raining V LikesToRolll nPuddles...

This should include all possible outcomes,
yet be able to combine knowledge:

If everyone has wet hair, probably rain




Representation

Explicitly writing out all possibilities:
1. Makes it more difficult to reason/deduce
(for tractability, ignore “unlikely” reasons)
2. Some rules or the exact requirements of
rules might not be known

For all these reasons, using logical inference
with uncertainty can be cumbersome

Instead, probabilistic reasoning works better



I Probability

I Quite often when dealing with probability,
I it is useful to evaluate how good outcf%mes are
For example, studying for tests: (L* N
You do not know what will be asked
so you have to guess what topics to review

vA *Ah

A
» !
——//
=

At some point, you feel “confident enough”
about the material and stop



Probability

Often it is not even possible to have a 100%
chance of success (e.g. cannot win every hand
of poker or ace every test)

Instead, if we have a utility or value for states,
we will try to achieve the maximum expected

utility Percent  Utility/Value
Gamble 99% 0
1% 100

Go home 100% 10



I Probability

I The maximum expected utility can be thought
I of as the “best on average” (expectation of
a random variable)

For the rest of today, we will go over some
probability basics (will use a lot in this class)

Dy



Probability: the basics

A probability of an event (or proposition) is:

P(,CIZ‘) ___ number of times x happens
~ number of possibilities

For example, the probability that a 6-sided
die rolls up odd is:

Possiblerolls: 1 2 3 4 5 6
Is odd? Y N Y N Y N

P(die=0dd)=3/6=0.5



I Probability: notation

Some notation blah-blah (from the book):

W - one possible state/outcome

() - all possible outcomes

¢ - an “event” or subset of possible outcomes
(I will quite often just call this “A”)



I Probability: notation

Some notation blah-blah (from the book):

W - one possible state/outcome

() - all possible outcomes

¢ - an “event” or subset of possible outcomes
(I will quite often just call this “A”)

So in the dice example:

W - The die is 2 (one possibility)

) -<1, 2, 3,4, 5, 6> (all possibilities)
@ - <1, 3, 5> (the die is odd)



I Probability: the basics

So in the dice example:
w - The die is 2 (one possibility)
0 -<1,2,3,4,5, 6> (all possibilities)
@ - <1, 3, 5> (the die is odd) P(¢) = > P(w)
(or: P(Die = odd)) wEP
Probabilities also need to:
- Be between zero and one:
0<Plw) <1

- Add up to 100%:
1 = P(w)
wel



I Probability: the basics

I Beyond these properties of probability,
I we only really need three more facts:

1. Conditional probability

P(A|B) = BAD) S

2. Probability of opposite happening
P(A)+ P(-4) =1

3. Definition of “or”
P(A or B) = P(A) + P(B) — P(A, B)



Probability: terminology :(

Terminology side note:

I P(A) is “unconditional”

P(A|B) is “conditional™ A B

{3 101 X
or pOSterlOF P(A or B) _ P(A) i P(B) — P(A, B)

P(A,B) is “joint” Proof by picture
probability P(A,B) = P(ANB) = P(AB)



I Probability: the basics

I Proof

I wEA

=) P+ ( > Plw) - ), P(w)>

wEA we—A weA
— (Z Pw)+ » P(@) — > Pw)
weA we—A we—A
=1— Z P(w)
weEA



Probability: example

I showed earlier (brute force) that if

I {A = die roll}, then P(A = odd) = 0.5

Why don’t you try to compute the following:
(B, C, D, etc. are other die rolls)

1. Sum of two dice is odd: P(A+ B = odd)
2. Sum of three dice is odd: P(A+ B+ C = odd)

3. 20 dice: P(A

B

C

T = odd)

(can you prove this rather than guess?)



Probability: example

To get some intuition, let’s brute force the
2-dice example: P(A+ B = odd)

— P(A+B=23)+P(A+B = 5)+P(A+B=T)+P(A+B = 9)+ P(A+B =1
_ 2 4 6 4 2 S
=xtutEtatn o
= g5 =0 0.14

0.12

At this point 0.10
you might guess 00
what the other 332 ) 159155 | 68| €5 | 8 | R 1 |
dIISWeEIS dre 0.02

| | |
X Bl Kl vk Yo o~ =




I Probability: example

I You might be able to brute force the 3-dice

I example but the 20-dice... probably not
P(A+ B =o0dd) = P(A = odd, B = even) + P(A = even, B = odd)
We can break this down into to cases:
1. Original die is odd, then next must be even
2. Original die is even, then next must be odd

The “then” part of both are 50% chance,
since regardless of which case we are in there
is a 50% chance means overall probability=0.5



Probability: example

You can then use induction from this argument
I to generalize it:

Inductive step (by cases):

1. Sum of n dice is odd, “n+1” die is even

2. Sum of n dice is even, “n+1” die is odd
“n+1” die is just a single die, so 50% chance

Base case: we showed by brute force 50%
for single die



I You might try to prove this with independence
I (talk about next time), which you could

Probability: example

But you might notice that this proof actually
says something stronger, as we never actually
use the probability of the cases happening

So regardless of your original probabilities
for odd/even, if you add a 6-sided die you will
end up 50/50 split for odd/even



I Random variables are a set of value-probability
I pairs

Random Variable: basics

You could think of our 6-sided die as a random
variable with the following value-probabilities:

Prob. 1/6 1/6 1/6 1/6 1/6 1/6
Value 1 2 3 4 5 6

As I mentioned earlier, we often want to
associate values/utilities with probabilities



Random Variable: basics

The expected value of a random variable is
I just the sum of the value*probability

So if a variable X is our die:
Prob. 1/6 1/6 1/6 1/6 1/6 1/6

Value 1 2 3 4 5 6

... then the expectation of X is:
EX]=%X;-P(X;) =15 +2z +3; +42 + 55 + 65 =35



Random Variable: basics

This makes some sense, as the “average” value
of a die is between 3 and 4 (1,2,3...4,5,6)

[t is more interesting to look at more complex
cases, like sum of 2 or 3 dice; === =
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Random Variable: basics
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Random Variable: basics
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Random Variable: basics

E[X+Y + 2] =77
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Random Variable: basics

E[X +Y 4 Z] =10.5
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I Random Variable: basics

I Just like probabilities, random variables have
I their own set of properties

(also for scalar “a”)
One of which is: ElaX] = a- E[X]
E[X +Y] = E[X]+ E[Y]

Since for a single die, E[X] = 3.5...
E[X+Y]|=E[X]+E[Y]=3.5+3.5=7
So 3 dice is 3*3.5 =10.5

4 dice is 4*3.5 =14




Continuous spaces

Dice are an easy example as they are discrete,
but sometimes probabilities/random variables
are not nice (continuous)

Normal Distribution

Consider: o
| (z=)® B

€ 202

P
V27?2
i ©0.15-
(above is the
0.05{ 0.13% 2.14% A£13.59% |34.13%|34.13% [13.59% )\ 2.14% 0.13%
probability density o ——0

function)




I For continuous spaces, the probability that a
I specific value is taken is always zero:
Plx=3)=0

Continuous spaces

Instead, we have to work over a range:
P(z <0)=0.5

... which unfortunately requires integration:

Pz <0)=P(x <0) = fi)oo \/%—We_%da: = 0.5



Continuous spaces

We will use the following distributions:

Uniftorm Normal Poisson
f(x)
Normal Distribution
ba| - f\
+ 1/ N
0 a b X e e e v

Probability distribution functions:
- if in [a,,b] 1 (UU—M)Z A=A

b—a
€ 202 A
vV 2mro2

0 otherwise



I Probability as values

Suppose we had a game where you payed
I $10 to play with the following situations:

1. You win $20 90% of the time, get $0 10%
2. Win $20 70%, get $0 30%
3. Win $20 0%, get $0 100%

Which games would you play?
For winning $20 or getting $0, what how low
chance of winning before you should not play



Probability as values

Instead of paying $10 to a slot machine,
I you want to bet against another person

Again consider the following situations:
1. 20% win $5, 80% lose $5
2. 20% win $2, 80% lose $8
3. 20% win $8, 80% lose $2

If we assume the total “bet” is $10 (as in
examples above)



I Whats the (math) connection between paying
I $10 to a slot and betting $10 between people?

Probability as values

How would your strategy change if you bet
$5 between people rather than betting $107?



I Whats the (math) connection between paying
I $10 to a slot and betting $10 between people?

Probability as values

How would your strategy change if you bet
$5 between people rather than betting $107?

In fact, the money bet is not that important...
the ratio of win/fail to gain/loss, specifically
you should play if: win% - gain > fail% - loss



Non-probability?

Consider the case:

P(A) = 0.2
P(B) = 0.3 GD

P(AorB)=0.9 A B
()

P(A or B) = P(A) + P(B) — P(A, B)

Although this does not follow the rules of
probability... would a robot that thinks this
be in trouble?



Non-probability?

I : Robot You bet
Consider the case: bets
P(A)=0.2 P(A) 8 2
P(B) =0.3 P(B) 7 3
P(AorB)=0.9 _P(AOrB) 16 A

You bet neither (A or B) will happen

Yes! Assume you were betting against this
robot and made the three bets above

The robot would think the first two fair and
the last in their favor...



Non-probability?

Robot You bet
If we look at the bets
I outcomes P(A) 8 2

(regardless of P(B) 7 3
what th.e. . ~P(AorB) 16 4
probabilities are)

Robot: A B ~A, B A, ~B ~A, ~B

Bet P(A) +8 -2 +8 -2

Bet P(B) +7 +7 -3 -3

Bet ~P(Aor B) -16 -16 -16 +4

Total -1 -11 -11 1

... N0 matter the outcome, robot will lose



I In fact, this is true for any “bad” set of
I probabilities

Non-probability?

If you have non-mathematically sound
probabilities, there is some betting strategy
that will result in you always losing

This means someone could cheat our Al,
so we will be careful to handle/use the rules
of probability correctly
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