
K-nearest neighbors (Ch. 18.8)

Announcements

Midterm2 grades up on gradescope

Review: Back-propagation

For w
1
 it would look like:

(book describes how to dynamic program this)

Learning types

Neural networks are what we call a parametric
model, (not to be confused with the statistics
definition) as the inputs are fixed

What we will talk about today (k-nearest
neighbor) is a non-parametric model as it will
not fix the input space (no assumptions about
parameters from examples in model)

What type were our decision trees?

Non-parametric model

The most simple non-parametric model would
be a simple look-up table

1. Store every example seen(and classification)
2. When asked to classify see if example seen

before... if not just guess

The accuracy of this model is fairly bad on
“new” examples, but it is actually close to
being a decent algorithm (despite basic)

K-nearest neighbor

For example, what is the unknown animal?

price

number things destroyed

K-nearest neighbor

Assume k=3, so find the 3 nearest neighbors

price

number things destroyed

K-nearest neighbor

Most common neighbor is dog, so our guess

price

number things destroyed

dog!

K-nearest neighbor

Rather than just arbitrarily guessing on new
examples, we find some “close” examples
already seen and use their classification (vote)

To do this we need to define:
1. What is “close”?
2. How many neighbors?

These parameters can be optimized/improved
in cross-validation(leave a few out of training)

K-nearest neighbor

1. What is “close”?

Answer: our old friend, the p-norm

Normally, p=2 (Euclidean
distance) is used if similar
attributes(e.g. (x,y,z) position)

p=1 (Manhattan) if dissimilar(age, height, etc.)

K-nearest neighbor

2. How many neighbors (argument “k”)?

Answer: Dunno

Small k tends to “overfit”, large k “underfits”
(What happens when k=all points/examples?)

k=1 k=15
image from:
Hastie, Tibshirani
and Friedman,
Fig 2.2 & 2.3

K-nearest neighbor

Remember this? Let’s use it again
Example A B C D E Ans

1 T low big twit 5 T

2 T low small FB 8 T

3 F med small FB 2 F

4 T high big snap 3 T

5 T high small goog 5 F

6 F med big snap 1 F

7 T low big goog 9 T

8 F high big goog 7 T

9 T med small twit 2 F

10 F high small goog 4 F

replace with numbers

K-nearest neighbor

What problems are there with this?
Example A B C D E Ans

1 1 0 1 0 5 T

2 1 0 0 1 8 T

3 0 1 0 1 2 F

4 1 2 1 2 3 T

5 1 2 0 3 5 F

6 0 1 1 2 1 F

7 1 0 1 3 9 T

8 0 2 1 3 7 T

9 1 1 0 1 2 F

10 0 2 0 3 4 F

K-nearest neighbor

Scale is important, as we are going to find
distance Example A B C D E Ans

1 1 0 1 0 5 T

2 1 0 0 1 8 T

3 0 1 0 1 2 F

4 1 2 1 2 3 T

5 1 2 0 3 5 F

6 0 1 1 2 1 F

7 1 0 1 3 9 T

8 0 2 1 3 7 T

9 1 1 0 1 2 F

10 0 2 0 3 4 F

more spread outcloser together

K-nearest neighbor

Let’s use this normalized-ish version
Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

K-nearest neighbor

Suppose we have k=3 and using Manhattan
distance (1-norm)

If we saw new data:
[1,0,1,0.33,0.2]

We would find the
distance to each of
the 10 examples

Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

K-nearest neighbor

New data = [1,0,1,0.33,0.2]
Example 1=[1,0,1,0 ,0.5]
Distance(new,E1) = 0+0+0+0.33+0.3 = 0.63

Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

Distance(new,E2)=1.6
Distance(new,E3)=2.5
Distance(new,E4)=1.44
Distance(new,E5)=2.97
Distance(new,E6)=1.93
Distance(new,E7)=1.37
Distance(new,E8)=3.17
Distance(new,E9)=1.5
Distance(new,E10)=3.87

K-nearest neighbor

New data = [1,0,1,0.33,0.2]
Example 1=[1,0,1,0 ,0.5]
Distance(new,E1) = 0+0+0+0.33+0.3 = 0.63

Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

Distance(new,E2)=1.6
Distance(new,E3)=2.5
Distance(new,E4)=1.44
Distance(new,E5)=2.97
Distance(new,E6)=1.93
Distance(new,E7)=1.37
Distance(new,E8)=3.17
Distance(new,E9)=1.5
Distance(new,E10)=3.87

3 nearest

K-nearest neighbor

Since examples 1, 4 and 7 are the closest
we see what output is most common among
them...
E1=T
E4=T
E7=T

We would guess our
new data is also T
(3 votes for, 0 against)

Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

K-nearest neighbor

What are the downsides of this approach
(assuming you could pick a good “k” and
distance measurement/metric)?

1. Scaling issues

What are the downsides of this approach
(assuming you could pick a good “k” and
distance measurement/metric)?

1. Some issues with scaling (high dimensional
input space... i.e. lots of attributes)

2. Computational efficiency... going through
all examples for one classification does not
scale well...

1. Scaling issues

If you have a large number of inputs/attributes
(we had 5 in the previous example)...

The data tends to be more “spread out” as you
simply add more things, thus larger distances

Normalizing does not fix this and it is often
hard to do or shouldn’t be done (normalizing
makes the assumption all inputs have equal
effect on output)

1. Scaling issues

Often called the “curse of dimensionality”

Take a simple case... let N=10 (examples)
uniformly distributed in [0,1] and k=1...
then what is average distance for 2D space?
(Assume distance measure is max difference)

1. Scaling issues

k=1 means we need to find only one point,
so on average we’d need the area of the box
to be 1/10 the space, as there are 10 examples

Let “L” be the side length of this box, then:
 ... or in general (d-dimensions):

1. Scaling issues

... so in 2-D, the distance (length of box) is
 , if examples in unit square ([0,1])

If we had 5 inputs (like our table), average
distance would be: , so the higher

the dimension, the more
“distant” everything
seems (i.e. neighbors
not really “near”)

about
1/3

2. Complexity issues

The second downside to this approach was
that the naive way would be to go through
all examples to find nearest

There are two ways we can speed this up:
1. Binary trees (take O(log N)), called

k-d trees (“k” is not number of neighbors)

2. Locally sensitive hashing (take O(1)-ish)
(but this approach is approximate)

2. Complexity issues

With k-d trees, we want to form a full binary
tree, so we find a threshold to “split” on

One such is if attribute
E < 0.45, we split in half

E < 0.45:
E3, E4, E6, E9, E10
E > 0.45:
E1, E2, E5, E7, E8

Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

2. Complexity issues

So we have:

Continue these half splits until only leaves

This lets us make log2(N) decisions before
we find a neighbor that is close
... what is the issue with this method?

10 examples

5 examples 5 examples

E<0.45 E>0.45

2. Complexity issues

We might actually need to take both branches

For example, if E=0.45 exactly... it would be
unwise to not look at neighbors with E=0.449
(as it might be closest globally)

So you might need to take both branches and
evaluate more than just k-neighbors
(some options might not have good half splits
as well, especially if discrete data)

2. Complexity issues

The second option is locally sensitive hashing

A hash in general is just a
unique-ish identifier
(out of this class scope)

We want hashes where the unique-ish ID is
“close” if the examples are “near”,
these are called locally sensitive hash
functions

2. Complexity issues

One pretty simple such hash function is to just
pull out a single attribute, so a hash on A:

Key A=1:
E1, E2, E4, E5, E7, E9

Key A=0:
E3, E6, E8, E10

Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

2. Complexity issues

Mathematically this is called a projection, as
you are reducing/mapping to a smaller set

You could also use hyperplanes/vector
to classify either binary or as an integer

Let’s pick the random a random vector:
[-1, -1, 1, 1, 1]

2. Complexity issues

For binary classification, we just look at the
sign of the example dot-producted with
the vector r=[-1, -1, 1, 1, 1]

So E1 goes bin positive

Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

2. Complexity issues

We end up with the following dot products:

So this hash+vector would put...
Positive bin:
E1, E2, E3,
E6, E7, E8, E10

Negative bin:
E4, E5, E9

Example A B C D E Ans

1 1 0 1 0 0.5 T

2 1 0 0 0.33 0.8 T

3 0 0.5 0 0.33 0.2 F

4 1 1 1 0.67 0.3 T

5 1 1 0 1 0.5 F

6 0 0.5 1 0.67 0.1 F

7 1 0 1 1 0.9 T

8 0 1 1 1 0.7 T

9 1 0.5 0 0.33 0.2 F

10 0 1 0 1 0.4 F

E1: 0.5
E2: 0.13
E3: 0.03
E4: -0.03
E5: -0.5
E6: 1.27
E7: 1.9
E8: 1.7
E9: -0.97
E10: 0.4

2. Complexity issues

If we want more bins, we could pick two
random numbers, a and b, where a>b

Then make the bins:
Pick a=0.5, b=0.2 and we have dot
product, so just need include a & b

E1 bin now:
E2 bin now:
... and so on ...

E1: 0.5
E2: 0.13
E3: 0.03
E4: -0.03
E5: -0.5
E6: 1.27
E7: 1.9
E8: 1.7
E9: -0.97
E10: 0.4

2. Complexity issues

What you would do is then use the same
hash function on the new input/query and find
the distance only between examples in that bin

This is an approximate approach, and some
hashes have theoretical bounds (probability
that the nearest will not be in the bin)

You can also have multiple hashes and union
the examples across all bins

Other resources
https://www.youtube.com/watch?v=MDniRwXizWo

https://www.youtube.com/watch?v=MDniRwXizWo

k-Nearest-Neighbor Regression

You could do regression by taking k-nearest
average position or linear regression

line made with only
k=3 nearest points

k=3 in both figures

average y-position
of 3 left-most points

k-Nearest-Neighbor Regression

Neither of these are great as not continuous,
so let’s investigate a 3rd option

Locally weighted regression uses a weight
function to ignore faraway points

(Note: this weight function is called a kernel,
which is something completely different than
the mathematical definition of a kernel... or
even the OS definition in csci...)

k-Nearest-Neighbor Regression

You could use something like a Gaussian as
a weighted distance, but that is a bit complex

The weight function/kernel should have:
1. Maximum at distance = 0
2. Symmetric
3. Integral finite/bounded (from -∞ to ∞)

k-Nearest-Neighbor Regression

The book gives this kernel, but the choice
is somewhat arbitrary:

distance

K(dist)
here for k=10
nearest neighbors

k-Nearest-Neighbor Regression

Once we have the local weight function,
we then just solve using gradient descent:

Then your y estimate for x
new

 is:

(most should look familiar from normal
linear regression)

sum over all points (many zero)
x

new
 is point you want to find y value for

k-Nearest-Neighbor Regression

Using this locally weighted regression, we
get a much smoother fit (but requires doing
gradient descent for each answer)

Parameter Optimization

For all of these there are some parameters
that need to be somewhat optimized

What “k” is best?
What distance function to use?
What kernel to use?

All of these can be found by withholding part
of training data (cross-validation), and some
can be done quite efficiently

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

