
Linear Regression/Classification
(Ch. 18.6-18.7)

Announcements

Homework 4 due Sunday

Test next Wednesday... covers ch 15-17
(HW 3 & 4)

Linear Regression

Let’s move away from decision trees (yay!)
and talk about more general learning

Today we will look at regression a bit
(as I have been ignoring it mostly)

This is a concept that you may have
encountered before, but not in the context
of learning

Linear Regression

Idea: You have a bunch of data points, and
you want to find the line “closest” to them

Linear Regression

Why linear and not some polynomial?

Linear Regression

Why linear and not some polynomial?

It is a lot harder to “overfit” with a linear fit,
yet it still gets the major “trend” of data

Also a bit to “visualize” data if high dimension

Another bonus is that it makes
the calculations much easier
(which is always nice...)

Linear Regression: How To

To find this line, let’s start with the simple
case: only one variable

Then our line will look like (call them “h”
just like our learning trees):

Then we need to define what “fit to data”
means (i.e. how do we calculate how “wrong”
a line is)

w is {w
0
, w

1
} as parameters

Linear Regression: How To

There are multiple options, but a common
choice is the square difference (called “loss”):

... where N is the number of examples/points

This makes sense as it penalizes “wrong”
answers more the further they are away
(two points off by 1 better than one off by 2)

y
j
 is actual y-coordinate h

w
(x

j
) is approximated (line) y-coordinate

Linear Regression: How To

You can plot this loss function (z-axis) with
respect to the choice of w

0
 and w

1

Regression Loss

Linear Regression: How To

We want the regression line (w
0
, w

1
) to have

the lowest loss possible

As the loss function looks convex (it is), the
minimum is unique, so from calculus we want:

bottom is when both w
0
 and w

1
 derivatives zero

Linear Regression: How To

It is not too hard to do a bit of calculus to find
the unique solution for w

0
 and w

1
:

Unfortunately, if you want to do polynomials,
you might not have a closed form solution
like this (i.e. no “easy” exact answer)

all sum from j=1 to N

Linear Regression: Estimate

You can do a gradient descent (much like
Newton’s method)(similar to “hill-climbing”)

w
old

w
new

Linear Regression: Estimate

Again, you need calculus to figure out what
direction is “down hill”, so to move the
weights (w

0
, w

1
, ...) towards the bottom:

... where α is basically the “step size”
(we will often use alpha in a similar fashion,
but call it the “learning factor/rate”)

w
new

w
old

Loss function is what we minimizing (convex), so derivative of it

w
old

Linear Regression: Estimate

The choice of α is somewhat arbitrary...

You don’t want it too big, but anything small
is fine (even better if you shrink it over time)

Linear Regression: Estimate

You can extend this to more than just one
variable (or attribute) in a similar fashion

If we X as (for attributes a,b,c ...):

... and w as:

Linear Regression: Estimate

Then if x
j
 is a single row of X:

Then our “line” is just the dot product:

Just like for the single variable case, we update
our w’s as:

... after math:

attribute for the corresponding weight in example, so if updating “w
2
” then “b

j
” as in line we do “w

2
*b

j
”

y
j
 is actual output for example/point number j

Linear Regression: Exact

However, you can solve for linear regression
exactly even with multiple inputs

Specifically, you can find optimal weights as:

This requires you to find a matrix inverse,
which can be a bit ugly... but do-able

Thus we estimate our line as:

matrix multiplication

Linear Regression: Overfitting

You actually still can overfit even with a
linear approximation by using too many
variables (can’t overfit “trend”)

Another option to minimize (rather than loss):

... where we will treat λ as some constant
and:
... where is similar to the p-norm

as before for line fit

Side note: “Distance”

The p-norm is a generalized way of measuring
distance (you already know some of these)

The definition is of a p-norm:

Specifically in 2 dimensions:

(Manhattan distance)

(Euclidean distance)

Linear Regression: Overfitting

We drop the exponent for L’s, so in 2D:

So we treat the weight vector’s “distance”
as the complexity (to minimize)

Here L
1
 is often the best choice as it tends

to have 0’s on “irrelevant” attributes/varaibles

... why are 0’s good? Why does it happen?

Linear Regression: Overfitting

This is because the L
1
 (Manhattan distance)

has a sharper “angle” than a circle (L
2
)

has w
1
 = 0,

as on y-axis
... so w

1

seems
irrelevant
(less overfit)

Linear Classification

A similar problem is instead of finding the
“closest” line, we want to find a line that
separates the data points (assume T/F for data)

This is more similar to what we were doing
with decision trees,
except we will use
lines rather than trees

Linear Classification

This is actually a bit harder than linear
regression as you can wiggle the line,
yet the classification stays the same

This means, most places the derivative are
zero, so we cannot do simple gradient descent

To classify we check if:

... if yes, then guess True... otherwise guess F

same as before: line defined by weights

Linear Classification

For example, in three dimensions:

This is simply one side of a plane in 3D,
so this is trying to classify
all possible points using
a single plane...

c = -w
0y is not “output” atm

Linear Classification

Despite gradient descent not working, we can
still “update” weights until convergence as:

Start weight randomly, then update weight
for every example with above equation

... what does this equation look like?

Linear Classification

Despite gradient descent not working, we can
still “update” weights until convergence as:

Start weight randomly, then update weight
for every example with above equation

... what does this equation look like?
Just the gradient descent (but I thought you
said we couldn’t since derivative messed up!)

Linear Classification

If we had only 2 inputs, it would be everything
above a line in 2D, but consider XOR on right

There is no way a single line can classify XOR
... what should we do?

Linear Classification

If one line isn’t enough... use more!
Our next topic will do just this...

Biology: brains

Computer science is fundamentally a creative
process: building new & interesting algorithms

As with other creative processes, this involves
mixing ideas together from various places

Neural networks get their inspiration from
how brains work at a fundamental level
(simplification... of course)

Biology: brains

(Disclaimer: I am not a neuroscience-person)
Brains receive small chemical signals at the
“input” side, if there are enough inputs to
“activate” it signals an “output”

Biology: brains

An analogy is sleeping: when you are asleep,
minor sounds will not wake you up

However, specific sounds in combination
with their volume will wake you up

Biology: brains

Other sounds might help you go to sleep
(my majestic voice?)

Many babies tend to sleep better with “white
noise” and some people like the TV/radio on

Neural network: basics

Neural networks are connected nodes, which
can be arranged into layers (more on this later)

First is an example of a perceptron, the most
simple NN; a single node on a single layer

Neural network: basics

Neural networks are connected nodes, which
can be arranged into layers (more on this later)

First is an example of a perceptron, the most
simple NN; a single node on a single layer

inputs
output

activation function

Mammals

Let's do an example with mammals...

First the definition of a mammal (wikipedia):

Mammals [posses]:
(1) a neocortex (a region of the brain),
(2) hair,
(3) three middle ear bones,
(4) and mammary glands

Mammals

Common mammal misconceptions:
(1) Warm-blooded
(2) Does not lay eggs

Let's talk dolphins for one second.
http://mentalfloss.com/article/19116/if-dolphins-are-mammals-and-all-mammals-have-hair-why-arent-dolphins-hairy

Dolphins have hair (technically) for the first
week after birth, then lose it for the rest of life
... I will count this as “not covered in hair”

Perceptrons

Consider this example: we want to classify
whether or not an animal is mammal via
a perceptron (weighted evaluation)

We will evaluate on:
1. Warm blooded? (WB) Weight = 2
2. Lays eggs? (LE) Weight = -2
3. Covered hair? (CH) Weight = 3

Perceptrons

Consider the following animals:
Humans {WB=y, LE=n, CH=y}, mam=y

Bat {WB=sorta, LE=n, CH=y}, mam=y

What about these?
Platypus {WB=y, LE=y, CH=y}, mam=y
Dolphin {WB=y, LE=n, CH=n}, mam=y
Fish {WB=n, LE=y, CH=n}, mam=n
Birds {WB=y, LE=y, CH=n}, mam=n

Neural network: feed-forward

Today we will look at feed-forward NN, where
information flows in a single direction

Recurrent networks can have outputs of one
node loop back to inputs as previous

This can cause the NN to not converge on an
answer (ask it the same question and it will
respond differently) and also has to maintain
some “initial state” (all around messy)

Neural network: feed-forward

Since in feed-forward neural networks info
only flows in one direction, we can group
nodes into “layers” based off dependencies

http://mentalfloss.com/article/19116/if-dolphins-are-mammals-and-all-mammals-have-hair-why-arent-dolphins-hairy

Neural network: feed-forward

Let's expand our mammal classification to
5 nodes in 3 layers (weights on edges):

WB

LE

CH

N1

N2 N4

N3

N5

2

-1

-1

3
1

-2
1

2

1

2

if Output(Node 5) > 0, guess mammal

Neural network: feed-forward

You try Bat on this:{WB=0, LE=-1, CH=1}

WB

LE

CH

N1

N2 N4

N3

N5

2

-1

-1

3
1

-2
1

2

1

2

if Output(Node 5) > 0, guess mammal

Assume (for now) output = sum input

Neural network: feed-forward

Output is -7, so bats are not mammal... Oops...

0

-1

1

1

4 5

-6

-7

2

-1

-1

3
1

-2
1

2

1

2

if Output(Node 5) > 0, guess mammal

Neural network: feed-forward

In fact, this is no better than our 1 node NN

This is because we simply output a linear
combination of weights into a linear function
(i.e. if f(x) and g(x) are linear... then
g(x)+f(x) is also linear)

Ideally, we want a activation function that
has a limited range so large signals do not
always dominate... what should we use?

Neural network: feed-forward

One commonly used function is the sigmoid:
 (in Logistic function family)

Why good?
1. Continuous
(derivatives exist)

2. Tells you
“how similar”
not just T/F

Back-propagation

The neural network is as good as its structure
and weights on edges

Structure we will ignore (more complex), but
there is an automated way to learn weights

Whenever a NN incorrectly answer a problem,
the weights play a “blame game”...
- Weights that have a big impact to the wrong

answer are reduced

Back-propagation

Let’s go back to our simple Neural Network:

WB

LE

CH

N

2

-2

3

When output was threshold
(i.e. sum > c), we had:

Now if we use the sigmoid
for the output instead... how
does this change?

output

Back-propagation

Basically we used to have:

Now we have:

So we have to use our good old friend,
the chain rule! So...

... turns into (math needed) ...

compare line output

compare output after sigmoid

Back-propagation

So if we had input:
WB = 1, LE = -1, CH = 0.5
... and we expected output “1”

Then we would update the WB weight as:

Back-propagation

The neural network is as good as its structure
and weights on edges

Structure we will ignore (more complex), but
there is an automated way to learn weights

Whenever a NN incorrectly answer a problem,
the weights play a “blame game”...
- Weights that have a big impact to the wrong

answer are reduced

Back-propagation

Consider this example: 4 nodes, 2 layers

N1

N2 N4

N3

in
2

in
1

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

1

This node as a constant bias of 1

out
1

out
2

b
1 b

2

Back-propagation

0.593

N2 N4

N3

in
2

in
1

.15

.2

.25

.3

.4

.45

.5

.55

1

Node 1: 0.15*0.05+0.2*0.1+0.35=0.3775 input
thus it outputs (all edges) S(0.3775)=0.59327

out
1

out
2

0.35

0.6

0.05

0.1

Back-propagation

0.593

0.597 0.773

0.751

in
2

in
1

.15

.2

.25

.3

.4

.45

.5

.55

1
Eventually we get: out

1
= 0.751, out

2
= 0.773

Suppose wanted: out
1
= 0.01, out

2
= 0.99

out
1

out
2

0.35

0.6

0.05

0.1

Back-propagation

We will define the error as:
(you will see why shortly)

Suppose we want to find how much w
5
 is

to blame for our incorrectness

We then need to find:
Apply the chain rule:

Back-propagation

Back-propagation

In a picture we did this:

Now that we know w5 is 0.08217 part
responsible, we update the weight by:
w

5
 ←w

5
 - α * 0.0822 = 0.3589 (from 0.4)

α is learning rate, set to 0.5

Back-propagation

For w
1
 it would look like:

(book describes how to dynamic program this)

Back-propagation

Specifically for w
1
 you would get:

Next we have to break down the top equation...

Back-propagation

Back-propagation

Similarly for Error
2
 we get:

You might notice this is small...
This is an issue with neural networks, deeper
the network the less earlier nodes update

NN examples

Despite this learning shortcoming, NN are
useful in a wide range of applications:

Reading handwriting
Playing games
Face detection
Economic predictions

Neural networks can also be very powerful
when combined with other techniques
(genetic algorithms, search techniques, ...)

NN examples
Examples:
https://www.youtube.com/watch?v=umRdt3zGgpU

https://www.youtube.com/watch?v=qv6UVOQ0F44

https://www.youtube.com/watch?v=xcIBoPuNIiw

https://www.youtube.com/watch?v=0Str0Rdkxxo

https://www.youtube.com/watch?v=l2_CPB0uBkc

https://www.youtube.com/watch?v=0VTI1BBLydE

NN examples

AlphaGo/Zero has been in the news recently,
and is also based on neural networks

AlphaGo uses Monte-Carlo tree search guided
by the neural network to prune useless parts

Often limiting Monte-Carlo in a static way
reduces the effectiveness, much like mid-state
evaluations can limit algorithm effectiveness

NN examples

Basically, AlphaGo uses a neural network
to “prune” parts for a Monte-carlo search

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 63
	Slide 64
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

