Welcome to CSci 5512 Artificial Intelligence II

Instructor (me)

James Parker Shepherd Laboratories 391

Primary contact: jparker@cs.umn.edu

Teaching Assistants

Arun Kumar, Nidhi Rajesh Patel

Textbook

Artificial Intelligence A Modern Approach, Russel and Norvig, 3rd edition

Class website

www.cs.umn.edu/academics/classes Or google "umn.edu csci class"

Syllabus, schedule, other goodies

Moodle page will have grades and homework submission

www.cs.umn.edu

Ch. 17.4-17.6

Ch. 18.1-18.5,

Homework 3, Sunday March

31 at 11:55 P.M.

9

10

March

April 1

25

Complex decisions

Loarning from oxamples

Don't like my slides? (tough)

http://aima.eecs.berkeley.edu/slides-pdf/

Constructing Bayesian networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to nadd X_i to the network select parents from X_1, \ldots, X_{i-1} such that $\mathbf{P}(X_i | Parents(X_i)) = \mathbf{P}(X_i | X_1, \ldots, X_{i-1})$

This choice of parents guarantees the global semantics:

 $\mathbf{P}(X_1, \dots, X_n) = \prod_{i=1}^{n} \mathbf{P}(X_i | X_1, \dots, X_{i-1}) \quad \text{(chain rule)} \\ = \prod_{i=1}^{n} \mathbf{P}(X_i | Parents(X_i)) \quad \text{(by construction)}$

Prerequisites

- 1. Competent programmer
- Common data structures (graph/tree)
- Some statistics (probabilities, random variables)
- 4. Some math (calculus)

Prerequisites

You went to the doctor and tested for a rare disease (1/1,000 people

have it)

Test chances	Detected	Not Detected	
Have disease	100%	0%	
Just fine	1%	99%	

If the test "detects" the disease, what is the probability you are sick?

Prerequisites

These algorithms will often involve some math

Hopefully things like this are not that intimidating: $p(x_{1:n}|\lambda_1)p(x_{n+1:N}|\lambda_2)p(\lambda_1)p(\lambda_2)p(n)$

 $= \left(\prod_{i=1}^{n} p(x_i|\lambda_1)\right) \left(\prod_{i=n+1}^{N} p(x_i|\lambda_2)\right) p(\lambda_1) p(\lambda_2) p(n)$

$$E[f(s)]_{\mathcal{P}} \approx \frac{1}{N} \sum_{i=1}^{N} f(s^{(i)})$$

50% Homework (-15% per day late) 15% Midterm (Wed. March 6) 15% Midterm 2 (Wed. April 17)

Your choice: 20% Final OR project (Tues. May 14, 1:30-3:30pm, this room)

For the project you have your choice of three different types:

(1) Experimental. Implement and compare interesting algorithms on a data set.

(2) Literature review. Read a wide range of papers and compare and contrast them.

(3) Theoretical. Prove an idea.

An example layout of an experimental project would be 10-12 pages:

- -Title, authors, abstract
- -Introduction & problem description (1-2 pg)
- -Literature review (2-3 pages)
- -Description of your approach (2-3 pages)
- -Analysis of results (1-2 pages)
- -Conclusion and summary -Bibliography

You pick the project, but must be related to an advanced AI topic

If you are unsure about the scope/difficulty of a topic, feel free to ask me

If you want to work in a group, you must receive my consent first

A short presentation *might* be required

Mario? https://www.youtube.com/watch?v=qv6UVOQ0F44

All exams are open book/notes (most people think they are hard)

You can use an electronic device if you want on exams, but no:

- phones
- internet
- running code (ish)

Homework are individual assessments (unless explicitly stated otherwise)

Please ensure the work you turn in is your own

Grading scale: 93% A 90% A-87% B+ 83% B 80% B-

77% C+ 73% C 70% C-67% D+ 60% D Below F

Schedule

Week	Week Of	Topics	Lecture Materials	Readings	Exams	Due
1	Jan. 21	Introduction: HI!		No readings		
2	Jan. 28	Uncertainty (review?)		Ch. 13		
3	Feb. 4	Probabilistic reasoning, exact		Ch. 14-14.4		
4	Feb. 11	Probabilistic reasoning, approximate		Ch. 14.4-14.7		Homework 1, Sunday Feb. 17 at 11:55 P.M.
5	Feb. 18	Probabilistic reasoning over time		Ch. 15-15.3		
6	Feb. 25	Probabilistic reasoning over time		Ch. 15.3-15.5		Homework 2, Sunday March 3 at 11:55 P.M.
7	March 4	Simple decisions		Ch. 16	Midterm 1, Wednesday March 6 Covers chapters 13-15	
8	March 11	Complex decisions		Ch. 17.1-17.3		
	March 18	Spring Break				
9	March 25	Complex decisions		Ch. 17.4-17.6		Homework 3, Sunday March 31 at 11:55 P.M.
10	April 1	Learning from examples		Ch. 18.1-18.5, 18.10		
11	April 8	Learning from examples		Ch. 18.6-18.7		Homework 4, Sunday April 14 at 11:55 P.M.
12	April 15	Learning from examples		Ch. 18.8-18.9	Midterm 2, Wednesday April 17 Covers chapters 16-18	
13	April 22	Learning probabilistic models		Ch. 20		
14	April 29	Reinforcement learning		Ch. 21		Homework 5, Sunday May 5 at 11:55 P.M.
15	May 6	Extra topics		ТВА		
16	May 13				Final Exam,	

Any questions?

Turing Test

For a long time, the Turing Test was a supposed indication of intelligence

A person would question two entities and have to determine which one is the computer and human

This is not very popular anymore

Turing Test

- To pass the Turing Test, a computer needs the following:
- Natural language processing (as the test is written and not verbal)
- Knowledge representation (storage)
- Reasoning (logical conclusions)
- Machine Learning (extrapolation)

Turing Test

https://www.youtube.com/watch?v=WFR3lOm_xhE

AI

Often times, fully exploring all the options is too costly (takes forever)

Chess: 10⁴⁷ states (tree about 10¹²³) Go: 10¹⁷¹ states (tree about 10³⁶⁰) At 1 million states per second... Chess: 10¹⁰⁹ years Go: 10³⁴⁶ years

AI

Simple computers have been built for hundreds of years

For artificial intelligence to mature, it needed to borrow from other fields: Math - logic and proofs Statistics - probability Economics - utility

AI

Self driving cars

Speech recognition

Game playing Logistics

Spam filter

AI - Chess

Spring 1997 - Deep(er) Blue (CMU / IBM)

AI - Go

Spring 2016 - AlphaGo (Google) December 2017- AlphaZero

AI - Dota2

August 2017 - OpenAI (Elon Musk)

https://www.youtube.com/watch?v=l92J1UvHf6M&feature=youtu.be

