
CSci 5271
Introduction to Computer Security

Malware and anonymity combined lecture
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Malware and the network, cont’d

Denial of service and the network

Announcements intermission

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Malware/anti-virus arms race

“Anti-virus” (AV) systems are really
general anti-malware

Clear need, but hard to do well

No clear distinction between benign
and malicious

Endless possibilities for deception

Signature-based AV

Similar idea to signature-based IDS

Would work well if malware were static

In reality:
Large, changing database
Frequent updated from analysts
Not just software, a subscription
Malware stays enough ahead to survive

Emulation and AV

Simple idea: run sample, see if it does
something evil

Obvious limitation: how long do you
wait?

Simple version can be applied online

More sophisticated emulators/VMs
used in backend analysis

Polymorphism

Attacker makes many variants of
starting malware

Different code sequences, same
behavior

One estimate: 30 million samples
observed in 2012

But could create more if needed

Packing

Sounds like compression, but real goal
is obfuscation

Static code creates real code on the fly

Or, obfuscated bytecode interpreter

Outsourced to independent “protection”
tools

Fake anti-virus

Major monentization strategy recently

Your system is infected, pay $19.95 for
cleanup tool

For user, not fundamentally
distinguishable from real AV

Outline

Malware and the network, cont’d

Denial of service and the network

Announcements intermission

Anonymous communications techniques

Tor basics

Tor experiences and challenges

DoS versus other vulnerabilities

Effect: normal operations merely
become impossible

Software example: crash as opposed
to code injection
Less power that complete compromise,
but practical severity can vary widely

Airplane control DoS, etc.

When is it DoS?

Very common for users to affect
others’ performance

Focus is on unexpected and unintended
effects

Unexpected channel or magnitude

Algorithmic complexity attacks

Can an adversary make your algorithm
have worst-case behavior?

O(n2) quicksort

Hash table with all entries in one bucket

Exponential backtracking in regex
matching

XML entity expansion

XML entities (c.f. HTML <) are like C
macros

#define B (A+A+A+A+A)

#define C (B+B+B+B+B)

#define D (C+C+C+C+C)

#define E (D+D+D+D+D)

#define F (E+E+E+E+E)

Compression DoS

Some formats allow very high
compression ratios

Simple attack: compress very large input

More powerful: nested archives

Also possible: “zip file quine”
decompresses to itself

DoS against network services

Common example: keep legitimate
users from viewing a web site

Easy case: pre-forked server supports
100 simultaneous connections

Fill them with very very slow downloads

Tiny bit of queueing theory

Mathematical theory of waiting in line

Simple case: random arrival, sequential
fixed-time service

M/D/1

If arrival rate � service rate, expected
queue length grows without bound

SYN flooding

SYN is first of three packets to set up
new connection

Traditional implementation allocates
space for control data

However much you allow, attacker fills
with unfinished connections

Early limits were very low (10-100)

SYN cookies

Change server behavior to stateless
approach
Embed small amount of needed
information in fields that will be echoed
in third packet

MAC-like construction

Other disadvantages, so usual
implementations used only under attack

DoS against network links

Try to use all available bandwidth,
crowd out real traffic

Brute force but still potentially effective

Baseline attacker power measured by
packet sending rate

Traffic multipliers

Third party networks (not attacker or
victim)

One input packet causes n output
packets

Commonly, victim’s address is forged
source, multiply replies

Misuse of debugging features

“Smurf” broadcast ping

ICMP echo request with forged source

Sent to a network broadcast address

Every recipient sends reply

Now mostly fixed by disabling this
feature

Distributed DoS

Many attacker machines, one victim

Easy if you own a botnet

Impractical to stop bots one-by-one

May prefer legitimate-looking traffic
over weird attacks

Main consideration is difficulty to filter

Outline

Malware and the network, cont’d

Denial of service and the network

Announcements intermission

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Upcoming deadlines

Project meetings mostly this week

Final progress reports due Friday
Includes formatting sample

Exercise set 5 due next Wednesday
Available now

Project presentations 4/25 and 5/2

Outline

Malware and the network, cont’d

Denial of service and the network

Announcements intermission

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Traffic analysis

What can you learn from encrypted
data? A lot

Content size, timing

Who’s talking to who
! countermeasure: anonymity

Nymity slider (Goldberg)

Verinymity
Social security number

Persistent pseudonymity
Pen name (“George Eliot”), “moot”

Linkable anonymity
Frequent-shopper card

Unlinkable anonymity
(Idealized) cash payments

Nymity ratchet?

It’s easy to add names on top of an
anonymous protocol

The opposite direction is harder

But, we’re stuck with the Internet as is

So, add anonymity to conceal
underlying identities

Steganography

One approach: hide real content within
bland-looking cover traffic

Classic: hide data in least-significant
bits of images

Easy to fool casual inspection, hard if
adversary knows the scheme

Dining cryptographers

Dining cryptographers Dining cryptographers

Dining cryptographers Dining cryptographers

DC-net challenges

Quadratic key setups and message
exchanges per round

Scheduling who talks when

One traitor can anonymously sabotage

Improvements subject of ongoing
research

Mixing/shuffling

Computer analogue of shaking a ballot
box, etc.

Reorder encrypted messages by a
random permutation

Building block in larger protocols

Distributed and verifiable variants
possible as well

Anonymous remailers

Anonymizing intermediaries for email
First cuts had single points of failure

Mix and forward messages after
receiving a sufficiently-large batch

Chain together mixes with multiple
layers of encryption

Fancy systems didn’t get critical mass
of users

Outline

Malware and the network, cont’d

Denial of service and the network

Announcements intermission

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Tor: an overlay network

Tor (originally from “the onion router”)
https://www.torproject.org/

An anonymous network built on top of
the non-anonymous Internet

Designed to support a wide variety of
anonymity use cases

Low-latency TCP applications

Tor works by proxying TCP streams
(And DNS lookups)

Focuses on achieving interactive
latency

WWW, but potentially also chat, SSH, etc.
Anonymity tradeoffs compared to
remailers

Tor Onion routing

Stream from sender to D forwarded
via A, B, and C

One Tor circuit made of four TCP hops

Encrypt packets (512-byte “cells”) as
EA(B; EB(C; EC(D;P)))

TLS-like hybrid encryption with
“telescoping” path setup

Client perspective

Install Tor client running in background

Configure browser to use Tor as proxy
Or complete Tor+Proxy+Browser bundle

Browse web as normal, but a lot slower
Also, sometimes google.com is in
Swedish

Entry/guard relays

“Entry node”: first relay on path
Entry knows the client’s identity, so
particularly sensitive

Many attacks possible if one adversary
controls entry and exit

Choose a small random set of “guards”
as only entries to use

Rotate slowly or if necessary

For repeat users, better than random
each time

Exit relays

Forwards traffic to/from non-Tor
destination
Focal point for anti-abuse policies

E.g., no exits will forward for port 25
(email sending)

Can see plaintext traffic, so danger of
sniffing, MITM, etc.

Centralized directory

How to find relays in the first place?

Straightforward current approach:
central directory servers

Relay information includes bandwidth,
exit polices, public keys, etc.

Replicated, but potential bottleneck for
scalability and blocking

Outline

Malware and the network, cont’d

Denial of service and the network

Announcements intermission

Anonymous communications techniques

Tor basics

Tor experiences and challenges

Anonymity loves company

Diverse user pool needed for
anonymity to be meaningful

Hypothetical Department of Defense
Anonymity Network

Tor aims to be helpful to a broad range
of (sympathetic sounding) potential
users

Who (arguably) needs Tor?

Consumers concerned about web
tracking

Businesses doing research on the
competition

Citizens of countries with Internet
censorship

Reporters protecting their sources

Law enforcement investigating targets

Tor and the US government

Onion routing research started with the
US Navy

Academic research still supported by
NSF
Anti-censorship work supported by the
State Department

Same branch as Voice of America

But also targeted by the NSA
Per Snowden, so far only limited success

Volunteer relays

Tor relays are run basically by
volunteers

Most are idealistic
A few have been less-ethical researchers,
or GCHQ

Never enough, or enough bandwidth
P2P-style mandatory participation?

Unworkable/undesirable

Various other kinds of incentives
explored

Performance

Increased latency from long paths

Bandwidth limited by relays

Currently 1-2 sec for 50KB, 5-10 sec for
1MB
Historically worse for many periods

Flooding (guessed botnet) fall 2013

Anti-censorship

As a web proxy, Tor is useful for
getting around blocking

Unless Tor itself is blocked, as it often is

Bridges are special less-public entry
points

Also, protocol obfuscation arms race
(currently behind)

Hidden services

Tor can be used by servers as well as
clients

Identified by cryptographic key, use
special rendezvous protocol

Servers often present easier attack
surface

Undesirable users

P2P filesharing
Discouraged by Tor developers, to little
effect

Terrorists
At least the NSA thinks so

Illicit e-commerce
“Silk Road” and its successors

Intersection attacks

Suppose you use Tor to update a
pseudonymous blog, reveal you live in
Minneapolis
Comcast can tell who in the city was
sending to Tor at the moment you post
an entry

Anonymity set of 1000 ! reasonable
protection

But if you keep posting, adversary can
keep narrowing down the set

Exit sniffing

Easy mistake to make: log in to an
HTTP web site over Tor

A malicious exit node could now steal
your password

Another reason to always use HTTPS
for logins

Browser bundle JS attack

Tor’s Browser Bundle disables many
features try to stop tracking
But, JavaScript defaults to on

Usability for non-expert users
Fingerprinting via NoScript settings

Was incompatible with Firefox
auto-updating
Many Tor users de-anonymized in
August 2013 by JS vulnerability
patched in June

Traffic confirmation attacks
If the same entity controls both guard
and exit on a circuit, many attacks can
link the two connections

“Traffic confirmation attack”
Can’t directly compare payload data,
since it is encrypted

Standard approach: insert and observe
delays
Protocol bug until recently: covert
channel in hidden service lookup

Hidden service traffic conf.
Bug allowed signal to guard when user
looked up a hidden service

Non-statistical traffic confirmation

For 5 months in 2014, 115 guard nodes
(about 6%) participated in this attack

Apparently researchers at CMU’s
SEI/CERT

Beyond “research,” they also gave/sold
info. to the FBI

Apparently used in Silk Road 2.0
prosecution, etc.

