CSci 5271 Introduction to Computer Security Day 21: Firewalls, NATs, and IDSes

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Firewalls and NAT boxes

Announcements intermission

Intrusion detection systems

Internet addition: middleboxes

- Original design: middle of net is only routers
 - End-to-end principle
- Modern reality: more functionality in the network
- Security is one major driver

Security/connectivity tradeoff

- A lot of security risk comes from a network connection
 - Attacker could be anywhere in the world
- Reducing connectivity makes security easier
- Connectivity demand comes from end users

What a firewall is

- Basically, a router that chooses not to forward some traffic
 - Based on an a-priori policy
- More complex architectures have multiple layers
 - DMZ: area between outer and inner layers, for outward-facing services

Inbound and outbound control

- Most obvious firewall use: prevent attacks from the outside
- Often also some control of insiders
 - Block malware-infected hosts
 - Employees wasting time on Facebook
 - Selling sensitive info to competitors
 - Nation-state Internet management
- May want to log or rate-limit, not block

Default: deny

- Usual whitelist approach: first, block everything
- Then allow certain traffic
- Basic: filter packets based on headers
- More sophisticated: proxy traffic at a higher level

IPv4 address scarcity

- Design limit of 2³² hosts
 - Actually less for many reasons
- Addresses becoming gradually more scarce over a many-year scale
- Some high-profile exhaustions in 2011
- IPv6 adoption still quite low, occasional signs of progress

Network address translation (NAT)

- Middlebox that rewrites addresses in packets
- Main use: allow inside network to use non-unique IP addresses
 - RFC 1918: 10.*, 192.168.*, etc.
 - While sharing one outside IP address
- Inside hosts not addressable from outside
 - De-facto firewall

Packet filtering rules

- Match based on:
 - Source IP address
 - Source port
 - Destination IP address
 - Destination port
 - Packet flags: TCP vs. UDP, TCP ACK, etc.
- Action, e.g. allow or block
- Obviously limited in specificity

Client and server ports

- TCP servers listen on well-known port numbers
 - Often < 1024, e.g. 22 for SSH or 80 for HTTP</p>
- Clients use a kernel-assigned random high port
- Plain packet filter would need to allow all high-port incoming traffic

Stateful filtering

- In general: firewall rules depend on previously-seen traffic
- Key instance: allow replies to an outbound connection
- See: port 23746 to port 80
- Allow incoming port 23746
 - To same inside host
- Needed to make a NAT practical

Circuit-level proxying

- Firewall forwards TCP connections for inside client
- Standard protocol: SOCKS
 - Supported by most web browsers
 - Wrapper approaches for non-aware apps
- Not much more powerful than packet-level filtering

Application-level proxying

- Knows about higher-level semantics
- Long history for, e.g., email, now HTTP most important
- More knowledge allows better filtering decisions
 - But, more effort to set up
- Newer: "transparent proxy"
 - Pretty much a man-in-the-middle

Tunneling

- Any data can be transmitted on any channel, if both sides agree
- E.g., encapsulate IP packets over SSH connection
 - Compare covert channels, steganography
- Powerful way to subvert firewall
 - Some legitimate uses

Outline

Firewalls and NAT boxes

Announcements intermission

Intrusion detection systems

Note to early readers

- This is the section of the slides most likely to change in the final version
- If class has already happened, make sure you have the latest slides for announcements

Outline

Firewalls and NAT boxes

Announcements intermission

Intrusion detection systems

Basic idea: detect attacks

- The worst attacks are the ones you don't even know about
- Best case: stop before damage occurs
 - Marketed as "prevention"
- Still good: prompt response
- Challenge: what is an attack?

Network and host-based IDSes

- Network IDS: watch packets similar to firewall
 - But don't know what's bad until you see it
 - More often implemented offline
- Host-based IDS: look for compromised process or user from within machine

Signature matching

- Signature is a pattern that matches known bad behavior
- Typically human-curated to ensure specificity
- See also: anti-virus scanners

Anomaly detection

- Learn pattern of normal behavior
- "Not normal" is a sign of a potential attack
- Has possibility of finding novel attacks
- Performance depends on normal behavior too

Recall: FPs and FNs

- False positive: detector goes off without real attack
- False negative: attack happens without detection
- Any detector design is a tradeoff between these (ROC curve)

Signature and anomaly weaknesses

- Signatures
 - Won't exist for novel attacks
 - Often easy to attack around
- Anomaly detection
 - Hard to avoid false positives
 - Adversary can train over time

Base rate problems

- If the true incidence is small (low base rate), most positives will be false
 - Example: screening test for rare disease
- Easy for false positives to overwhelm admins
- E.g., 100 attacks out of 10 million packets, 0.01% FP rate
 - How many false alarms?

Adversarial challenges

- FP/FN statistics based on a fixed set of attacks
- But attackers won't keep using techniques that are detected
- Instead, will look for:
 - Existing attacks that are not detected
 - Minimal changes to attacks
 - Truly novel attacks

Wagner and Soto mimicry attack

- Host-based IDS based on sequence of syscalls
- **©** Compute $A \cap M$, where:
 - A models allowed sequences
 - M models sequences achieving attacker's goals
- Further techniques required:
 - Many syscalls made into NOPs
 - Replacement subsequences with similar effect

Next time

Malware and network denial of service