CSci 5271
Introduction to Computer Security
Middleboxes and malware combined lecture

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Firewalls and NAT boxes, contd

Network address translation (NAT)

) Middlebox that rewrites addresses in
packets
) Main use: allow inside network to use

non-unigue IP addresses
® RFC 1918: 10.*, 192168.*, etc.
® While sharing one outside IP address

) Inside hosts not addressable from

outside
m De-facto firewall

Packet filtering rules

) Match based on:
® Source IP address
® Source port
® Destination IP address
® Destination port
m Packet flags: TCP vs. UDP TCP ACK, etc.

) Action, e.g. allow or block
) Obviously limited in specificity

Client and server ports

) TCP servers listen on well-known port

numbers
m Often < 1024, e.qg. 22 for SSH or 80 for
HTTP

©) Clients use a kernel-assigned random
high port

) Plain packet fitter would need to allow
all high-port incoming traffic

Stateful filtering

©) In general: firewall rules depend on
previously-seen traffic

£) Key instance: allow replies to an
outbound connection

£) See: port 23746 to port 80

) Allow incoming port 23746
= To same inside host

£) Needed to make a NAT practical

Circuit-level proxying

) Firewall forwards TCP connections for
inside client
) Standard protocol: SOCKS

® Supported by most web browsers
® Wrapper approaches for non-aware apps

) Not much more powerful than
packet-level filtering

Application-level proxying

£) Knows about higher-level semantics
©) Long history for, eg., email, now HTTP
most important
) More knowledge allows better filtering
decisions
® But, more effort to set up
£) Newer: “transparent proxy”
® Pretty much a man-in-the-middle

Tunneling

) Any data can be transmitted on any
channel, if both sides agree
©) E.g, encapsulate IP packets over SSH
connection
® Compare covert channels, steganography
) Powerful way to subvert firewall
® Some legitimate uses

Tunneling example: HA2

CSE Labs firewall (blocks port 5542)

Outline

Intrusion detection systems

Basic idea: detect attacks

£) The worst attacks are the ones you

don't even know about
) Best case: stop before damage occurs
® Marketed as “prevention”

) Still good: prompt response
©) Challenge: what is an attack?

Network and host-based IDSes

©) Network IDS: watch packets similar to
firewall
® But don't know what's bad until you see it
® More often implemented offline
) Host-based IDS: look for compromised
process or user from within machine

Signature matching

) Signature is a pattern that matches
known bad behavior

£) Typically human-curated to ensure
specificity
£) See also: anti-virus scanners

Anomaly detection

) Learn pattern of normal behavior

©) "Not normal” is a sign of a potential
attack

) Has possibility of finding novel attacks

) Performance depends on normal
behavior too

Recall: FPs and FNs

) False positive: detector goes off
without real attack

) False negative: attack happens without
detection

©) Any detector design is a tradeoff
between these (ROC curve)

Signature and anomaly weaknesses

©) Signatures
m Won't exist for novel attacks
m Often easy to attack around
©) Anomaly detection

® Hard to avoid false positives
m Adversary can train over time

Base rate problems

) If the true incidence is small (low base
rate), most positives will be false
® Example: screening test for rare disease
) Easy for false positives to overwhelm
admins
©) Eg., 100 attacks out of 10 million

packets, 0.01% FP rate
® How many false alarms?

Adversarial challenges

) FP/FN statistics based on a fixed set of
attacks

©) But attackers won't keep using
technigues that are detected
) Instead, will look for:

® Existing attacks that are not detected
® Minimal changes to attacks
® Truly novel attacks

Wagner and Soto mimicry attack

) Host-based IDS based on sequence of
syscalls
©) Compute A N M, where:

® A models allowed sequences
® M models sequences achieving
attacker's goals
©) Further techniques required:
® Many syscalls made into NOPs

® Replacement subsequences with similar
effect

Outline

Malware and the network

Malicious software

) Shortened to Mal... ware

) Software whose inherent goal is

malicious
® Not just used for bad purposes

) Strong adversary
) High visibility
£) Many types

Trojan (horse)

) Looks benign, has secret malicious
functionality

) Key technique: fool users into
installing/running

) Concern dates back to 1970s, MLS

(Computer) viruses

) Attaches itself to other software

) Propagates when that program runs
©) Once upon a time: floppy disks

£) More modern: macro viruses

©) Have declined in relative importance

Worms

) Completely automatic self-propagation
) Requires remote security holes

) Classic example: 1988 Morris worm
) "Golden age” in early 2000s

) Internet-level threat seems to have
declined

Fast worm propagation

£ Initial hit-list
® Pre-scan list of likely targets
® Accelerate cold-start phase

) Permutation-based sampling

® Systematic but not obviously patterned
® Pseudorandom permutation

£) Approximate time: 15 minutes

® "Warhol worm”
® Too fast for human-in-the-loop response

Getting underneath

) Lower-level/higher-privilege code can
deceive normal code

©) Rootkit: hide malware by changing
kernel behavior

) MBR virus: take control early in boot

) Blue-pill attack: malware is a VMM
running your system

Malware motivation

£) Once upon a time: curiosity, fame

©) Now predominates: money

® Modest-size industry
® Competition and specialization

£) Also significant: nation-states

® Industrial espionage
® Stuxnet (not officially acknowledged)

User-based monetization

©) Adware, mild spyware

©) Keyloggers, stealing financial
credentials
£) Ransomware
® Application of public-key encryption
® Malware encrypts user files
® Only $300 for decryption key

Bots and botnets

©) Bot: program under control of remote
attacker

©) Botnet: large group of bot-infected
computers with common “master”

) Command & control network protocol
® Once upon a time: IRC
= Now more likely custom and obfuscated
® Centralized — peer-to-peer
® Gradually learning crypto and protocol

lessons

Bot monetization

) Click (ad) fraud

) Distributed DoS (next section)
) Bitcoin mining

) Pay-per-install (subcontracting)
©) Spam sending

Malware/anti-virus arms race

£) “Anti-virus” (AV) systems are really
general anti-malware

) Clear need, but hard to do well

£) No clear distinction between benign
and malicious

©) Endless possibilities for deception

Signature-based AV

) Similar idea to signature-based IDS
) Would work well if malware were static

) In reality:
® Large, changing database
® Frequent updated from analysts
® Not just software, a subscription
® Malware stays enough ahead to survive

Emulation and AV

©) Simple idea: run sample, see if it does
something evil

) Obvious limitation: how long do you
wait?

) Simple version can be applied online

£) More sophisticated emulators/VMs
used in backend analysis

Polymorphism

) Attacker makes many variants of
starting malware

) Different code sequences, same
behavior

©) One estimate: 30 million samples
observed in 2012

) But could create more if needed

Packing

) Sounds like compression, but real goal
is obfuscation

) Static code creates real code on the fly
©) Or, obfuscated bytecode interpreter

) Outsourced to independent “protection”
tools

Fake anti-virus

) Major monentization strategy recently

©) Your system is infected, pay $19.95 for
cleanup tool

©) For user, not fundamentally
distinguishable from real AV

Outline

Denial of service and the network

DoS versus other vulnerabilities

©) Effect: normal operations merely
become impossible

) Software example: crash as opposed
to code injection
) Less power that complete compromise,

but practical severity can vary widely
® Airplane control DoS, etc.

When is it DoS?

£) Very common for users to affect
others’ performance

©) Focus is on unexpected and unintended
effects

©) Unexpected channel or magnitude

Algorithmic complexity attacks

©) Can an adversary make your algorithm
have worst-case behavior?

© O(n?) quicksort
) Hash table with all entries in one bucket

) Exponential backtracking in regex
matching

XML entity expansion

) XML entities (cf. HTML &1t) are like C
macros

#define B (A+A+A+A+A)
#define C (B+B+B+B+B)
#define D (C+C+C+C+C)
#define E (D+D+D+D+D)
#define F (E+E+E+E+E)

Compression DoS

) Some formats allow very high
compression ratios
® Simple attack: compress very large input
) More powerful: nested archives
) Also possible: “zip file quine”
decompresses to itself

DoS against network services

) Common example: keep legitimate
users from viewing a web site

©) Easy case: pre-forked server supports
100 simultaneous connections

) Fill them with very very slow downloads

Tiny bit of queueing theory

) Mathematical theory of waiting in line

) Simple case: random arrival, sequential
fixed-time service
8 M/D/1
o) If arrival rate > service rate, expected
gueue length grows without bound

SYN flooding

©) SYN is first of three packets to set up
new connection

©) Traditional implementation allocates
space for control data

) However much you allow, attacker fills
with unfinished connections

©) Early limits were very low (10-100)

SYN cookies

) Change server behavior to stateless
approach

) Embed small amount of needed
information in fields that will be echoed
in third packet

®m MAC-like construction

) Other disadvantages, so usual

implementations used only under attack

DoS aqgainst network links

£) Try to use all available bandwidth,
crowd out real traffic

) Brute force but still potentially effective

) Baseline attacker power measured by
packet sending rate

Traffic multipliers

©) Third party networks (not attacker or
victim)

) One input packet causes n output
packets

©) Commonly, victim’s address is forged
source, multiply replies

) Misuse of debugging features

“Smurf” broadcast ping

£) ICMP echo request with forged source
©) Sent to a network broadcast address
) Every recipient sends reply

) Now mostly fixed by disabling this
feature

Distributed DoS

©) Many attacker machines, one victim
) Easy if you own a botnet
) Impractical to stop bots one-by-one

) May prefer legitimate-looking traffic
over weird attacks
® Main consideration is difficulty to filter

