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Abstract protocols

Outline of what information is
communicated in messages

Omit most details of encoding, naming,
sizes, choice of ciphers, etc.

Describes honest operation
But must be secure against adversarial
participants

Seemingly simple, but many subtle
problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice
intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K

Needham-Schroeder

Mutual authentication via nonce exchange,
assuming public keys (core):
A! B : fNA; AgEB
B! A : fNA; NBgEA
A! B : fNBgEB

Needham-Schroeder MITM

A! C : fNA; AgEC
C! B : fNA; AgEB
B! C : fNA; NBgEA
C! A : fNA; NBgEA
A! C : fNBgEC
C! B : fNBgEB



Certificates, Denning-Sacco

A certificate signed by a trusted
third-party S binds an identity to a
public key

CA = SignS(A;KA)

Suppose we want to use S in
establishing a session key KAB:
A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB

Attack against Denning-Sacco

A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB
B! S : B;C

S! B : CB; CC

B! C : CA; CC; fSignA(KAB)gKC
By re-encrypting the signed key, Bob can
pretend to be Alice to Charlie

Envelopes analogy

Encrypt then sign, or vice-versa?

On paper, we usually sign inside an
envelope, not outside. Two reasons:

Attacker gets letter, puts in his own
envelope (c.f. attack against X.509)
Signer claims “didn’t know what was in
the envelope” (failure of non-repudiation)

Design robustness principles

Use timestamps or nonces for
freshness

Be explicit about the context

Don’t trust the secrecy of others’
secrets

Whenever you sign or decrypt, beware
of being an oracle

Distinguish runs of a protocol

Implementation principles

Ensure unique message types and
parsing

Design for ciphers and key sizes to
change

Limit information in outbound error
messages

Be careful with out-of-order messages
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Note to early readers

This is the section of the slides most
likely to change in the final version

If class has already happened, make
sure you have the latest slides for
announcements
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Random numbers and entropy

Cryptographic RNGs use cipher-like
techniques to provide indistinguishability
But rely on truly random seeding to
stop brute force

Extreme case: no entropy ! always
same “randomness”

Modern best practice: seed pool with
256 bits of entropy

Suitable for security levels up to 2256

Netscape RNG failure

Early versions of Netscape SSL
(1994-1995) seeded with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit
encryption)

But worse because many bits
guessable

Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme
using /dev/urandom

Also mixed in some uninitialized
variable values

“Extra variation can’t hurt”

From modern perspective, this was the
original sin

Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out
some lines to fix a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all
but 16 bits)

Brief mailing list discussion didn’t lead
to understanding

Broken library used for �2 years before
discovery



Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the
public net are breakable

Some sites share complete keypairs
RSA keys with one prime in common
(detected by large-scale GCD)

One likely culprit: insufficient entropy in
key generation

Embedded devices, Linux /dev/urandom

vs. /dev/random

DSA signature algorithm also very
vulnerable

New factoring problem (CCS’17)

An Infineon RSA library used primes of
the form p = k �M+(65537a mod M)

Smaller problems: fingerprintable, less
entropy
Major problem: can factor with a
variant of Coppersmith’s algoritm

E.g., 3 CPU months for a 1024-bit key

Side-channel attacks

Timing analysis:
Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired
Equivalent Privacy (WEP)

F&S: designed by a committee that
contained no cryptographers
Problem 1: note “privacy”: what about
integrity?

Nope: stream cipher + CRC = easy bit
flipping

WEP shared key

Single key known by all parties on
network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key
(export restrictions) plus 24-bit IV =
64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes
hours
Worse: random or everyone starts at zero



WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key,
similar IV)
First stream bytes used

Not a practical problem for other RC4
users like SSL

Key from a hash, skip first output bytes

New problem with WPA (CCS’17)

Session key set up in a 4-message
handshake
Key reinstallation attack: replay #3

Causes most implementations to reset
nonce and replay counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly
described in spec

Outside the scope of previous security
proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by
your adversary

In a public spec, most worrying are
unexplained elements

Best practice: choose constants from
well-known math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST
standard, based on elliptic curve

Looks like provable (slow enough!) but
strangely no proof

Specification includes long unexplained
constants
Academic researchers find:

Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of
constants allows prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to
US govt. FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by
Snowden leaks

NIST and RSA immediately recommend
withdrawal


