
CSci 5271
Introduction to Computer Security
Crypto failures and middleboxes,

combined lecture
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Crypto protocols, cont’d

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Certificates, Denning-Sacco

A certificate signed by a trusted
third-party S binds an identity to a
public key

CA = SignS(A;KA)

Suppose we want to use S in
establishing a session key KAB:
A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB

Attack against Denning-Sacco

A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB
B! S : B;C

S! B : CB; CC

B! C : CA; CC; fSignA(KAB)gKC
By re-encrypting the signed key, Bob can
pretend to be Alice to Charlie

Envelopes analogy

Encrypt then sign, or vice-versa?

On paper, we usually sign inside an
envelope, not outside. Two reasons:

Attacker gets letter, puts in his own
envelope (c.f. attack against X.509)
Signer claims “didn’t know what was in
the envelope” (failure of non-repudiation)

Design robustness principles

Use timestamps or nonces for
freshness

Be explicit about the context

Don’t trust the secrecy of others’
secrets

Whenever you sign or decrypt, beware
of being an oracle

Distinguish runs of a protocol



Implementation principles

Ensure unique message types and
parsing

Design for ciphers and key sizes to
change

Limit information in outbound error
messages

Be careful with out-of-order messages

Outline

Crypto protocols, cont’d

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Random numbers and entropy

Cryptographic RNGs use cipher-like
techniques to provide indistinguishability
But rely on truly random seeding to
stop brute force

Extreme case: no entropy ! always
same “randomness”

Modern best practice: seed pool with
256 bits of entropy

Suitable for security levels up to 2256

Netscape RNG failure

Early versions of Netscape SSL
(1994-1995) seeded with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit
encryption)

But worse because many bits
guessable

Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme
using /dev/urandom

Also mixed in some uninitialized
variable values

“Extra variation can’t hurt”

From modern perspective, this was the
original sin

Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out
some lines to fix a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all
but 16 bits)

Brief mailing list discussion didn’t lead
to understanding

Broken library used for �2 years before
discovery



Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the
public net are breakable

Some sites share complete keypairs
RSA keys with one prime in common
(detected by large-scale GCD)

One likely culprit: insufficient entropy in
key generation

Embedded devices, Linux /dev/urandom

vs. /dev/random

DSA signature algorithm also very
vulnerable

New factoring problem (CCS’17)

An Infineon RSA library used primes of
the form p = k �M+(65537a mod M)

Smaller problems: fingerprintable, less
entropy
Major problem: can factor with a
variant of Coppersmith’s algoritm

E.g., 3 CPU months for a 1024-bit key

Side-channel attacks

Timing analysis:
Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired
Equivalent Privacy (WEP)

F&S: designed by a committee that
contained no cryptographers
Problem 1: note “privacy”: what about
integrity?

Nope: stream cipher + CRC = easy bit
flipping

WEP shared key

Single key known by all parties on
network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key
(export restrictions) plus 24-bit IV =
64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes
hours
Worse: random or everyone starts at zero



WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key,
similar IV)
First stream bytes used

Not a practical problem for other RC4
users like SSL

Key from a hash, skip first output bytes

New problem with WPA (CCS’17)

Session key set up in a 4-message
handshake
Key reinstallation attack: replay #3

Causes most implementations to reset
nonce and replay counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly
described in spec

Outside the scope of previous security
proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by
your adversary

In a public spec, most worrying are
unexplained elements

Best practice: choose constants from
well-known math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST
standard, based on elliptic curve

Looks like provable (slow enough!) but
strangely no proof

Specification includes long unexplained
constants
Academic researchers find:

Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of
constants allows prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to
US govt. FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by
Snowden leaks

NIST and RSA immediately recommend
withdrawal

Outline

Crypto protocols, cont’d

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems



Deadlines reminders

Exercise set 4 due Wednesday night

HA2 due Monday night (start soon)

Outline

Crypto protocols, cont’d

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Internet addition: middleboxes

Original design: middle of net is only
routers

End-to-end principle

Modern reality: more functionality in the
network

Security is one major driver

Security/connectivity tradeoff

A lot of security risk comes from a
network connection

Attacker could be anywhere in the world

Reducing connectivity makes security
easier

Connectivity demand comes from end
users

What a firewall is

Basically, a router that chooses not to
forward some traffic

Based on an a-priori policy

More complex architectures have
multiple layers

DMZ: area between outer and inner
layers, for outward-facing services

Inbound and outbound control

Most obvious firewall use: prevent
attacks from the outside
Often also some control of insiders

Block malware-infected hosts
Employees wasting time on Facebook
Selling sensitive info to competitors
Nation-state Internet management

May want to log or rate-limit, not block



Default: deny

Usual whitelist approach: first, block
everything

Then allow certain traffic

Basic: filter packets based on headers

More sophisticated: proxy traffic at a
higher level

IPv4 address scarcity

Design limit of 232 hosts
Actually less for many reasons

Addresses becoming gradually more
scarce over a many-year scale

Some high-profile exhaustions in 2011

IPv6 adoption still quite low, occasional
signs of progress

Network address translation (NAT)

Middlebox that rewrites addresses in
packets
Main use: allow inside network to use
non-unique IP addresses

RFC 1918: 10.*, 192.168.*, etc.
While sharing one outside IP address

Inside hosts not addressable from
outside

De-facto firewall

Packet filtering rules

Match based on:
Source IP address
Source port
Destination IP address
Destination port
Packet flags: TCP vs. UDP, TCP ACK, etc.

Action, e.g. allow or block

Obviously limited in specificity

Client and server ports

TCP servers listen on well-known port
numbers

Often < 1024, e.g. 22 for SSH or 80 for
HTTP

Clients use a kernel-assigned random
high port

Plain packet filter would need to allow
all high-port incoming traffic

Stateful filtering

In general: firewall rules depend on
previously-seen traffic

Key instance: allow replies to an
outbound connection

See: port 23746 to port 80

Allow incoming port 23746
To same inside host

Needed to make a NAT practical



Circuit-level proxying

Firewall forwards TCP connections for
inside client
Standard protocol: SOCKS

Supported by most web browsers
Wrapper approaches for non-aware apps

Not much more powerful than
packet-level filtering

Application-level proxying

Knows about higher-level semantics

Long history for, e.g., email, now HTTP
most important
More knowledge allows better filtering
decisions

But, more effort to set up

Newer: “transparent proxy”
Pretty much a man-in-the-middle

Tunneling

Any data can be transmitted on any
channel, if both sides agree
E.g., encapsulate IP packets over SSH
connection

Compare covert channels, steganography

Powerful way to subvert firewall
Some legitimate uses

Outline

Crypto protocols, cont’d

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Basic idea: detect attacks

The worst attacks are the ones you
don’t even know about
Best case: stop before damage occurs

Marketed as “prevention”

Still good: prompt response

Challenge: what is an attack?

Network and host-based IDSes

Network IDS: watch packets similar to
firewall

But don’t know what’s bad until you see it
More often implemented offline

Host-based IDS: look for compromised
process or user from within machine



Signature matching

Signature is a pattern that matches
known bad behavior

Typically human-curated to ensure
specificity

See also: anti-virus scanners

Anomaly detection

Learn pattern of normal behavior

“Not normal” is a sign of a potential
attack

Has possibility of finding novel attacks

Performance depends on normal
behavior too

Recall: FPs and FNs

False positive: detector goes off
without real attack

False negative: attack happens without
detection

Any detector design is a tradeoff
between these (ROC curve)

Signature and anomaly weaknesses

Signatures
Won’t exist for novel attacks
Often easy to attack around

Anomaly detection
Hard to avoid false positives
Adversary can train over time

Base rate problems

If the true incidence is small (low base
rate), most positives will be false

Example: screening test for rare disease

Easy for false positives to overwhelm
admins
E.g., 100 attacks out of 10 million
packets, 0.01% FP rate

How many false alarms?

Adversarial challenges

FP/FN statistics based on a fixed set of
attacks

But attackers won’t keep using
techniques that are detected
Instead, will look for:

Existing attacks that are not detected
Minimal changes to attacks
Truly novel attacks



Wagner and Soto mimicry attack

Host-based IDS based on sequence of
syscalls
Compute A \M, where:

A models allowed sequences
M models sequences achieving
attacker’s goals

Further techniques required:
Many syscalls made into NOPs
Replacement subsequences with similar
effect


