CSci 5271 Introduction to Computer Security Crypto failures and middleboxes, combined lecture

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

Crypto protocols, cont'd

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Certificates, Denning-Sacco

A certificate signed by a trusted third-party S binds an identity to a public key

 $C_A = \text{Sign}_S(A, K_A)$

Suppose we want to use S in establishing a session key K_{AB}:

 $A \rightarrow S : A, B$ $S \rightarrow A : C_A, C_B$

 $A \rightarrow B: C_A, C_B, \{\text{Sign}_A(K_{AB})\}_{K_P}$

Attack against Denning-Sacco

 $\begin{array}{rll} A \rightarrow S: & A, B \\ S \rightarrow A: & C_A, C_B \\ \hline A \rightarrow B: & C_A, C_B, \{ \text{Sign}_A(K_{AB}) \}_{K_B} \\ \hline B \rightarrow S: & B, C \\ S \rightarrow B: & C_B, C_C \\ B \rightarrow C: & C_A, C_C, \{ \text{Sign}_A(K_{AB}) \}_{K_C} \\ \end{array}$ By re-encrypting the signed key, Bob can pretend to be Alice to Charlie

Implementation principles

- Ensure unique message types and parsing
- Design for ciphers and key sizes to change
- Limit information in outbound error messages
- Be careful with out-of-order messages

Outline

Crypto protocols, cont'd

- More causes of crypto failure
- Announcements intermission
- Firewalls and NAT boxes
- Intrusion detection systems

Random numbers and entropy Cryptographic RNGs use cipher-like techniques to provide indistinguishability But rely on truly random seeding to stop brute force Extreme case: no entropy → always same "randomness" Modern best practice: seed pool with 256 bits of entropy Suitable for security levels up to 2²⁵⁶

Debian/OpenSSL RNG failure (1) OpenSSL has pretty good scheme

- using /dev/urandom
 - variable values
 - "Extra variation can't hurt"
- From modern perspective, this was the original sin
 - Remember undefined behavior discussion?
- But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

- Debian maintainer commented out some lines to fix a Valgrind warning "Potential use of uninitialized value"
- Accidentally disabled most entropy (all but 16 bits)
- Brief mailing list discussion didn't lead to understanding
- Broken library used for ~2 years before discovery

New factoring problem (CCS'17)

- An Infineon RSA library used primes of the form $p = k \cdot M + (65537^a \mod M)$
- Smaller problems: fingerprintable, less entropy
- Major problem: can factor with a variant of Coppersmith's algoritm E.g., 3 CPU months for a 1024-bit key

- First WiFi encryption standard: Wired Equivalent Privacy (WEP)
- F&S: designed by a committee that contained no cryptographers
- Problem 1: note "privacy": what about integrity?
 - Nope: stream cipher + CRC = easy bit flipping

WEP key size and IV size

- Original sizes: 40-bit shared key (export restrictions) plus 24-bit IV = 64-bit RC4 key
 Both too small
 - 120 bit un anno de la cast 24
- 128-bit upgrade kept 24-bit IV
 - Vague about how to choose IVs
 - Least bad: sequential, collision takes hours
 - Worse: random or everyone starts at zero

New problem with WPA (CCS'17)

- Session key set up in a 4-message
- handshake Key reinstallation attack: replay #3
 - Causes most implementations to reset nonce and replay counter
 - In turn allowing many other attacks
 - One especially bad case: reset key to 0

Protocol state machine behavior poorly described in spec

Outside the scope of previous security proofs

Trustworthiness of primitives

- Classic worry: DES S-boxes
- Obviously in trouble if cipher chosen by your adversary
- In a public spec, most worrying are unexplained elements
- Best practice: choose constants from well-known math, like digits of π

Dual_EC_DRBG (1)

- Pseudorandom generator in NIST standard, based on elliptic curve
- Looks like provable (slow enough!) but strangely no proof
- Specification includes long unexplained constants
- Academic researchers find:
 - Some EC parts look good
 - But outputs are statistically distinguishable

Dual_EC_DRBG (2)

Found 2007: special choice of constants allows prediction attacks
 Big red flag for paranoid academics
 Significant adoption in products sold to US govt. FIPS-140 standards
 Semi-plausible rationale from RSA (EMC)
 NSA scenario basically confirmed by Snowden leaks
 NIST and RSA immediately recommend withdrawal

Outline

Crypto protocols, cont'd

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Deadlines reminders

Exercise set 4 due Wednesday night
 HA2 due Monday night (start soon)

Outline

Crypto protocols, cont'd

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Security/connectivity tradeoff

- A lot of security risk comes from a network connection
 - Attacker could be anywhere in the world
- Reducing connectivity makes security easier
- Connectivity demand comes from end users

Inbound and outbound control

- Most obvious firewall use: prevent attacks from the outside
- Often also some control of insiders
 - Block malware-infected hosts
 - Employees wasting time on Facebook
 - Selling sensitive info to competitors
 - Nation-state Internet management

May want to log or rate-limit, not block

Default: deny

- Usual whitelist approach: first, block everything
- Then allow certain traffic
- Basic: filter packets based on headers
- More sophisticated: proxy traffic at a higher level

IPv4 address scarcity

- Design limit of 2³² hosts
 Actually less for many reasons
- Addresses becoming gradually more scarce over a many-year scale
- Some high-profile exhaustions in 2011
- IPv6 adoption still quite low, occasional signs of progress

Application-level proxying

- Knows about higher-level semantics
- Long history for, e.g., email, now HTTP most important
- More knowledge allows better filtering decisions
 - But, more effort to set up
- 🖲 Newer: "transparent proxy"
 - Pretty much a man-in-the-middle

Tunneling

- Any data can be transmitted on any channel, if both sides agree
- E.g., encapsulate IP packets over SSH connection
 - Compare covert channels, steganography
- Powerful way to subvert firewall Some legitimate uses

Outline

Crypto protocols, cont'd

More causes of crypto failure

Announcements intermission

Firewalls and NAT boxes

Intrusion detection systems

Basic idea: detect attacks

- The worst attacks are the ones you don't even know about
- Best case: stop before damage occurs Marketed as "prevention"
- Still good: prompt response
- Challenge: what is an attack?

Network and host-based IDSes

- Network IDS: watch packets similar to firewall
 - But don't know what's bad until you see it
 More often implemented offline
- Host-based IDS: look for compromised process or user from within machine

Anomaly detection

- Learn pattern of normal behavior
- Not normal" is a sign of a potential attack
- Has possibility of finding novel attacks
- Performance depends on normal behavior too

Adversarial challenges

- FP/FN statistics based on a fixed set of attacks
- But attackers won't keep using techniques that are detected
- 🖲 Instead, will look for:
 - Existing attacks that are not detected
 - Minimal changes to attacks
 - Truly novel attacks

