CSci 5271
Introduction to Computer Security
Web security, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

More cross-site risks

HTTP header injection

) Untrusted data included in response
headers

) Can include CRLF and new headers, or
premature end to headers

) AKA “response splitting”

Content sniffing

) Browsers determine file type from
headers, extension, and content-based
guessing

m Latter two for ~ 1% server errors

©) Many sites host “untrusted” images
and media

) Inconsistencies in quessing lead to a
kind of XSS

® Eg, "chimera” PNG-HTML document

Cross-site request forgery

) Certain web form on bank . com used to
wire money

) Link or script on evil.com loads it
with certain parameters

® Linking is exception to same-origin

©) If 'm logged in, money sent
automatically

) Confused deputy, cookies are ambient
authority

CSRF prevention

) Give site’s forms random-nonce tokens

m Eg, in POST hidden fields
® Not in a cookie, that's the whole point

©) Reject requests without proper token
® Or, ask user to re-authenticate

£) XSS can be used to steal CSRF tokens




Open redirects

©) Common for one page to redirect
clients to another
) Target should be validated
®m With authentication check if appropriate
) Open redirect. target supplied in

parameter with no checks

® Doesn't directly hurt the hosting site
® But reputation risk, say if used in phishing
®m We teach users to trust by site

Outline

Announcements intermission

Note to early readers

) This is the section of the slides most
likely to change in the final version
) If class has already happened, make

sure you have the latest slides for
announcements

Outline

Confidentiality and privacy

Site perspective

) Protect confidentiality of authenticators
m Passwords, session cookies, CSRF tokens

) Duty to protect some customer info
® Personally identifying info (“identity theft”)
® Credit-card info (Payment Card Industry
Data Security Standards)
® Health care (HIPAA), education (FERPA)
®m Whatever customers reasonably expect

You need to use SSL

) Finally coming around to view that
more sites need to support HTTPS

® Special thanks to WiFi, NSA
©) If you take credit cards (of course)

©) If you ask users to log in

® Must be protecting something, right?
® Also important for users of Tor et al.




Server-side encryption

) Also consider encrypting data “at rest”
) (Or, avoid storing it at all)
©) Provides defense in depth

® Reduce damage after another attack

©) May be hard to truly separate keys

®m OWASP example: public key for website
— backend credit card info

Adjusting client behavior

£) HTTPS and password fields are basic
hints
) Consider disabling autocomplete

® Usability tradeoff, save users from
themselves
® Finally standardized in HTML5

) Consider disabling caching

m Performance tradeoff
m Better not to have this on user’s disk
® Or proxy? You need SSL

User vs. site perspective

) User privacy goals can be opposed to
site goals
) Such as in tracking for advertisements

) Browser makers can find themselves in
the middle

® Of course, differ in institutional pressures

Third party content / web bugs

©) Much tracking involves sites other than

the one in the URL bar
® For fun, check where your cookies are
coming from

) Various levels of cooperation

) Web bugs are typically 1x1 images used
only for tracking

Fllike < 0

Cookies arms race

) Privacy-sensitive users like to block
and/or delete cookies

) Sites have various reasons to retain
identification

) Various workarounds:

® Similar features in Flash and HTML5

® Various channels related to the cache

® Evercookie: store in n places, regenerate
if subset are deleted

Browser fingerprinting

) Combine various server or JS-visible

attributes passively
® User agent string (10 bits)
® Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from
exhaustive)




History stealing

) History of what sites you've visited is
not supposed to be JS-visible
) But, many side-channel attacks have
been possible
® Query link color
m CSS style with external image for visited
links
® Slow-rendering timing channel
® Harvesting bitmaps
® User perception (e.q. fake CAPTCHA)

Browser and extension choices

) More aggressive privacy behavior lives
in extensions
® Disabling most JavaScript (NoScript)
® HTTPS Everywhere (whitelist)
= Tor Browser Bundle
) Default behavior is much more
controversial

® Concern not to kill advertising support as
an economic model

Outline

Even more web risks

Misconfiguration problems

) Default accounts
) Unneeded features

) Framework behaviors

® Don't automatically create variables from
query fields

Openness tradeoffs

©) Error reporting

®m Few benign users want to see a stack
backtrace

©) Directory listings
® Hallmark of the old days
) Readable source code of scripts

® Doesn't have your DB password in it, does
it?

Using vulnerable components

©) Large web apps can use a lot of
third-party code
) Convenient for attackers too

m OWASP: two popular vulnerable
components downloaded 22m times

) Hiding doesn't work if it's popular
) Stay up to date on security
announcements




Clickjacking

) Fool users about what they're clicking
on
® Circumvent security confirmations
® Fabricate ad interest

©) Example techniques:
® Frame embedding
® Transparency

® Spoof cursor
® Temporal “bait and switch”

Crawling and scraping

©) A lot of web content is free-of-charge,
but proprietary
® Yours in a certain context, if you view
ads, etc.

r) Sites don't want it downloaded
automatically (web crawling)

©) Or parsed and user for another
purpose (screen scraping)
©) High-rate or honest access detectable




