
CSci 5271
Introduction to Computer Security

Web security, part 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

HTTP header injection

Untrusted data included in response
headers

Can include CRLF and new headers, or
premature end to headers

AKA “response splitting”

Content sniffing

Browsers determine file type from
headers, extension, and content-based
guessing

Latter two for � 1% server errors

Many sites host “untrusted” images
and media
Inconsistencies in guessing lead to a
kind of XSS

E.g., “chimera” PNG-HTML document

Cross-site request forgery

Certain web form on bank.com used to
wire money
Link or script on evil.com loads it
with certain parameters

Linking is exception to same-origin

If I’m logged in, money sent
automatically
Confused deputy, cookies are ambient
authority

CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens



Open redirects

Common for one page to redirect
clients to another
Target should be validated

With authentication check if appropriate

Open redirect: target supplied in
parameter with no checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

Outline

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Note to early readers

This is the section of the slides most
likely to change in the final version

If class has already happened, make
sure you have the latest slides for
announcements

Outline

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Site perspective

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry
Data Security Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect

You need to use SSL

Finally coming around to view that
more sites need to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor et al.



Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website
! backend credit card info

Adjusting client behavior

HTTPS and password fields are basic
hints
Consider disabling autocomplete

Usability tradeoff, save users from
themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL

User vs. site perspective

User privacy goals can be opposed to
site goals

Such as in tracking for advertisements

Browser makers can find themselves in
the middle

Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than
the one in the URL bar

For fun, check where your cookies are
coming from

Various levels of cooperation

Web bugs are typically 1x1 images used
only for tracking

Cookies arms race

Privacy-sensitive users like to block
and/or delete cookies

Sites have various reasons to retain
identification
Various workarounds:

Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate
if subset are deleted

Browser fingerprinting

Combine various server or JS-visible
attributes passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from

exhaustive)



History stealing

History of what sites you’ve visited is
not supposed to be JS-visible
But, many side-channel attacks have
been possible

Query link color
CSS style with external image for visited
links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives
in extensions

Disabling most JavaScript (NoScript)
HTTPS Everywhere (whitelist)
Tor Browser Bundle

Default behavior is much more
controversial

Concern not to kill advertising support as
an economic model

Outline

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Misconfiguration problems

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from
query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack
backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does
it?

Using vulnerable components

Large web apps can use a lot of
third-party code
Convenient for attackers too

OWASP: two popular vulnerable
components downloaded 22m times

Hiding doesn’t work if it’s popular

Stay up to date on security
announcements



Clickjacking

Fool users about what they’re clicking
on

Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”

Crawling and scraping

A lot of web content is free-of-charge,
but proprietary

Yours in a certain context, if you view
ads, etc.

Sites don’t want it downloaded
automatically (web crawling)

Or parsed and user for another
purpose (screen scraping)

High-rate or honest access detectable


