CSci 5271 Introduction to Computer Security Web security and crypto failure combined lecture

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

- Cross-site scripting, cont'd More cross-site risks Announcements intermission Confidentiality and privacy Even more web risks More crypto protocols
- More causes of crypto failure

Filter failure: one-pass delete

- Simple idea: remove all occurrences of <script>
- What happens to <scr<script>ipt>?

Filter failure: UTF-7

- You may have heard of UTF-8
 Encode Unicode as 8-bit bytes
 UTF-7 is similar but uses only ASCII
- Encoding can be specified in a <meta> tag, or some browsers will guess

🖲 +ADw-script+AD4-

Filter failure: event handlers Put this on something the user will be tempted to click on There are more than 100 handlers like this recognized by various browsers

Outline

Cross-site scripting, cont'd More cross-site risks Announcements intermission Confidentiality and privacy Even more web risks More crypto protocols More causes of crypto failure

Content sniffing

- Browsers determine file type from headers, extension, and content-based guessing
 - Latter two for ~ 1% server errors
- Many sites host "untrusted" images and media
- Inconsistencies in guessing lead to a kind of XSS
 - E.g., "chimera" PNG-HTML document

Outline

Cross-site scripting, cont'd More cross-site risks Announcements intermission Confidentiality and privacy Even more web risks More crypto protocols More causes of crypto failure

Newly released assignments

- Exercise set 4 due next Wednesday 4/10
- HA2 due Monday 4/15 (also tax day)

HA 2 questions

- 1. Network sniffing
- 2. Offline dictionary attack
- 3. Forging predictable cookies
- 4. SQL injection
- 5. Cross-site scripting
- 6. Crypto. attack against a poor MAC

Outline

Cross-site scripting, cont'd

- More cross-site risks
- Announcements intermission

Confidentiality and privacy

Even more web risks

- More crypto protocols
- More causes of crypto failure

Site perspective Protect confidentiality of authenticators Passwords, session cookies, CSRF tokens Duty to protect some customer info Personally identifying info ("identity theft") Credit-card info (Payment Card Industry Data Security Standards) Health care (HIPAA), education (FERPA)

Whatever customers reasonably expect

User vs. site perspective

- User privacy goals can be opposed to site goals
- Such as in tracking for advertisements
- Browser makers can find themselves in the middle

Of course, differ in institutional pressures

History stealing

- History of what sites you've visited is not supposed to be JS-visible
- But, many side-channel attacks have been possible
 - Query link color
 - CSS style with external image for visited links
 - Slow-rendering timing channel
 - Harvesting bitmaps
 - User perception (e.g. fake CAPTCHA)

Browser and extension choices More aggressive privacy behavior lives in extensions Disabling most JavaScript (NoScript) HTTPS Everywhere (whitelist) Tor Browser Bundle Default behavior is much more controversial Concern not to kill advertising support as an economic model

Outline

- Cross-site scripting, cont'd
- More cross-site risks
- Announcements intermission
- Confidentiality and privacy
- Even more web risks
- More crypto protocols
- More causes of crypto failure

Openness tradeoffs

Clickjacking Fool users about what they're clicking on Circumvent security confirmations Fabricate ad interest Example techniques: Frame embedding Transparency Spoof cursor Temporal "bait and switch"

Crawling and scraping A lot of web content is free-of-charge, but proprietary Yours in a certain context, if you view ads, etc. Sites don't want it downloaded automatically (*web crawling*) Or parsed and user for another purpose (*screen scraping*) High-rate or honest access detectable

Outline

- Cross-site scripting, cont'd
- More cross-site risks
- Announcements intermission
- Confidentiality and privacy
- Even more web risks

More crypto protocols

More causes of crypto failure

Abstract protocols

Outline of what information is communicated in messages

- Omit most details of encoding, naming, sizes, choice of ciphers, etc.
- Describes honest operation
 - But must be secure against adversarial participants
- Seemingly simple, but many subtle problems

Protocol notation

$\begin{array}{l} A \rightarrow B: N_B, \{T_0, B, N_B\}_{K_B} \\ \blacksquare A \rightarrow B: \text{ message sent from Alice} \\ \text{ intended for Bob} \end{array}$

- B (after :): Bob's name
- ${\color{black} \bullet}_{\kappa}$: encryption with key K

Needham-Schroeder

Mutual authentication via nonce exchange, assuming public keys (core):

 $\begin{array}{ll} A \rightarrow B: \ \{N_A,A\}_{E_B} \\ B \rightarrow A: \ \{N_A,N_B\}_{E_A} \\ A \rightarrow B: \ \{N_B\}_{E_B} \end{array}$

Needham-Schroeder MITM

 $\begin{array}{l} A \rightarrow C: \ \{N_A,A\}_{E_C} \\ C \rightarrow B: \ \{N_A,A\}_{E_B} \\ B \rightarrow C: \ \{N_A,N_B\}_{E_A} \\ C \rightarrow A: \ \{N_A,N_B\}_{E_A} \\ A \rightarrow C: \ \{N_B\}_{E_C} \\ C \rightarrow B: \ \{N_B\}_{E_B} \end{array}$

Attack against Denning-Sacco

 $\begin{array}{l} A \rightarrow S: \ A, B \\ S \rightarrow A: \ C_A, C_B \\ \hline A \rightarrow B: \ C_A, C_B, \{ \text{Sign}_A(K_{AB}) \}_{K_B} \\ \hline B \rightarrow S: \ B, C \\ S \rightarrow B: \ C_B, C_C \\ B \rightarrow C: \ C_A, C_C, \{ \text{Sign}_A(K_{AB}) \}_{K_C} \\ \end{array}$ By re-encrypting the signed key, Bob can pretend to be Alice to Charlie

Implementation principles

- Ensure unique message types and parsing
- Design for ciphers and key sizes to change
- Limit information in outbound error messages
- Be careful with out-of-order messages

Outline

- Cross-site scripting, cont'd More cross-site risks Announcements intermission Confidentiality and privacy Even more web risks
- More crypto protocols
- More causes of crypto failure

Random numbers and entropy Cryptographic RNGs use cipher-like techniques to provide indistinguishability But rely on truly random seeding to stop brute force Extreme case: no entropy → always same "randomness" Modern best practice: seed pool with 256 bits of entropy Suitable for security levels up to 2²⁵⁶

Debian/OpenSSL RNG failure (1)

- OpenSSL has pretty good scheme using /dev/urandom
 Also mixed in some uninitialized
 - variable values
 - "Extra variation can't hurt"
- From modern perspective, this was the original sin
 - Remember undefined behavior discussion?
- But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

- Debian maintainer commented out some lines to fix a Valgrind warning "Potential use of uninitialized value"
- Accidentally disabled most entropy (all but 16 bits)
- Brief mailing list discussion didn't lead to understanding
- Broken library used for ~2 years before discovery

New factoring problem (CCS'17)

- An Infineon RSA library used primes of the form $p = k \cdot M + (65537^a \mod M)$
- Smaller problems: fingerprintable, less entropy
- Major problem: can factor with a variant of Coppersmith's algoritm E.g., 3 CPU months for a 1024-bit key

- First WiFi encryption standard: Wired Equivalent Privacy (WEP)
- F&S: designed by a committee that contained no cryptographers
- Problem 1: note "privacy": what about integrity?
 - Nope: stream cipher + CRC = easy bit flipping

WEP key size and IV size

- Original sizes: 40-bit shared key (export restrictions) plus 24-bit IV = 64-bit RC4 key
 Both too small
 - 120 bit un anno de la cast 24
- 128-bit upgrade kept 24-bit IV
 - Vague about how to choose IVs
 - Least bad: sequential, collision takes hours
 - Worse: random or everyone starts at zero

New problem with WPA (CCS'17)

- Session key set up in a 4-message handshake
- Key reinstallation attack: replay #3
 - Causes most implementations to reset nonce and replay counter
 - In turn allowing many other attacks
 - One especially bad case: reset key to 0

Protocol state machine behavior poorly described in spec

Outside the scope of previous security proofs

Trustworthiness of primitives

- Classic worry: DES S-boxes
- Obviously in trouble if cipher chosen by your adversary
- In a public spec, most worrying are unexplained elements
- Best practice: choose constants from well-known math, like digits of π

Dual_EC_DRBG (1)

- Pseudorandom generator in NIST standard, based on elliptic curve
- Looks like provable (slow enough!) but strangely no proof
- Specification includes long unexplained constants
- Academic researchers find:
 - Some EC parts look good
 - But outputs are statistically distinguishable

Dual_EC_DRBG (2)

Found 2007: special choice of constants allows prediction attacks
 Big red flag for paranoid academics
 Significant adoption in products sold to US govt. FIPS-140 standards
 Semi-plausible rationale from RSA (EMC)
 NSA scenario basically confirmed by Snowden leaks
 NIST and RSA immediately recommend withdrawal