
CSci 5271
Introduction to Computer Security

Web security and crypto failure combined
lecture

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

More crypto protocols

More causes of crypto failure

Filter failure: one-pass delete

Simple idea: remove all occurrences of
<script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta>

tag, or some browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

<IMG onmouseover="alert('xss')">

Put this on something the user will be
tempted to click on

There are more than 100 handlers like
this recognized by various browsers

Use good libraries

Coding your own defenses will never
work

Take advantage of known good
implementations
Best case: already built into your
framework

Disappointingly rare



Content Security Policy

New HTTP header, W3C candidate
recommendation
Lets site opt-in to stricter treatment of
embedded content, such as:

No inline JS, only loaded from separate
URLs
Disable JS eval et al.

Has an interesting violation-reporting
mode

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

More crypto protocols

More causes of crypto failure

HTTP header injection

Untrusted data included in response
headers

Can include CRLF and new headers, or
premature end to headers

AKA “response splitting”

Content sniffing

Browsers determine file type from
headers, extension, and content-based
guessing

Latter two for � 1% server errors

Many sites host “untrusted” images
and media
Inconsistencies in guessing lead to a
kind of XSS

E.g., “chimera” PNG-HTML document

Cross-site request forgery

Certain web form on bank.com used to
wire money
Link or script on evil.com loads it
with certain parameters

Linking is exception to same-origin

If I’m logged in, money sent
automatically
Confused deputy, cookies are ambient
authority

CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens



Open redirects

Common for one page to redirect
clients to another
Target should be validated

With authentication check if appropriate

Open redirect: target supplied in
parameter with no checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

More crypto protocols

More causes of crypto failure

Newly released assignments

Exercise set 4 due next Wednesday
4/10

HA2 due Monday 4/15 (also tax day)

HA 2 questions

1. Network sniffing

2. Offline dictionary attack

3. Forging predictable cookies

4. SQL injection

5. Cross-site scripting

6. Crypto. attack against a poor MAC

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

More crypto protocols

More causes of crypto failure

Site perspective

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry
Data Security Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect



You need to use SSL

Finally coming around to view that
more sites need to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor et al.

Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website
! backend credit card info

Adjusting client behavior

HTTPS and password fields are basic
hints
Consider disabling autocomplete

Usability tradeoff, save users from
themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL

User vs. site perspective

User privacy goals can be opposed to
site goals

Such as in tracking for advertisements

Browser makers can find themselves in
the middle

Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than
the one in the URL bar

For fun, check where your cookies are
coming from

Various levels of cooperation

Web bugs are typically 1x1 images used
only for tracking

Cookies arms race

Privacy-sensitive users like to block
and/or delete cookies

Sites have various reasons to retain
identification
Various workarounds:

Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate
if subset are deleted



Browser fingerprinting

Combine various server or JS-visible
attributes passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from

exhaustive)

History stealing

History of what sites you’ve visited is
not supposed to be JS-visible
But, many side-channel attacks have
been possible

Query link color
CSS style with external image for visited
links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives
in extensions

Disabling most JavaScript (NoScript)
HTTPS Everywhere (whitelist)
Tor Browser Bundle

Default behavior is much more
controversial

Concern not to kill advertising support as
an economic model

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

More crypto protocols

More causes of crypto failure

Misconfiguration problems

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from
query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack
backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does
it?



Using vulnerable components

Large web apps can use a lot of
third-party code
Convenient for attackers too

OWASP: two popular vulnerable
components downloaded 22m times

Hiding doesn’t work if it’s popular

Stay up to date on security
announcements

Clickjacking

Fool users about what they’re clicking
on

Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”

Crawling and scraping

A lot of web content is free-of-charge,
but proprietary

Yours in a certain context, if you view
ads, etc.

Sites don’t want it downloaded
automatically (web crawling)

Or parsed and user for another
purpose (screen scraping)

High-rate or honest access detectable

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

More crypto protocols

More causes of crypto failure

Abstract protocols

Outline of what information is
communicated in messages

Omit most details of encoding, naming,
sizes, choice of ciphers, etc.

Describes honest operation
But must be secure against adversarial
participants

Seemingly simple, but many subtle
problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice
intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K



Needham-Schroeder

Mutual authentication via nonce exchange,
assuming public keys (core):
A! B : fNA; AgEB
B! A : fNA; NBgEA
A! B : fNBgEB

Needham-Schroeder MITM

A! C : fNA; AgEC
C! B : fNA; AgEB
B! C : fNA; NBgEA
C! A : fNA; NBgEA
A! C : fNBgEC
C! B : fNBgEB

Certificates, Denning-Sacco

A certificate signed by a trusted
third-party S binds an identity to a
public key

CA = SignS(A;KA)

Suppose we want to use S in
establishing a session key KAB:
A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB

Attack against Denning-Sacco

A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB
B! S : B;C

S! B : CB; CC

B! C : CA; CC; fSignA(KAB)gKC
By re-encrypting the signed key, Bob can
pretend to be Alice to Charlie

Envelopes analogy

Encrypt then sign, or vice-versa?

On paper, we usually sign inside an
envelope, not outside. Two reasons:

Attacker gets letter, puts in his own
envelope (c.f. attack against X.509)
Signer claims “didn’t know what was in
the envelope” (failure of non-repudiation)

Design robustness principles

Use timestamps or nonces for
freshness

Be explicit about the context

Don’t trust the secrecy of others’
secrets

Whenever you sign or decrypt, beware
of being an oracle

Distinguish runs of a protocol



Implementation principles

Ensure unique message types and
parsing

Design for ciphers and key sizes to
change

Limit information in outbound error
messages

Be careful with out-of-order messages

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

More crypto protocols

More causes of crypto failure

Random numbers and entropy

Cryptographic RNGs use cipher-like
techniques to provide indistinguishability
But rely on truly random seeding to
stop brute force

Extreme case: no entropy ! always
same “randomness”

Modern best practice: seed pool with
256 bits of entropy

Suitable for security levels up to 2256

Netscape RNG failure

Early versions of Netscape SSL
(1994-1995) seeded with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit
encryption)

But worse because many bits
guessable

Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme
using /dev/urandom

Also mixed in some uninitialized
variable values

“Extra variation can’t hurt”

From modern perspective, this was the
original sin

Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out
some lines to fix a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all
but 16 bits)

Brief mailing list discussion didn’t lead
to understanding

Broken library used for �2 years before
discovery



Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the
public net are breakable

Some sites share complete keypairs
RSA keys with one prime in common
(detected by large-scale GCD)

One likely culprit: insufficient entropy in
key generation

Embedded devices, Linux /dev/urandom

vs. /dev/random

DSA signature algorithm also very
vulnerable

New factoring problem (CCS’17)

An Infineon RSA library used primes of
the form p = k �M+(65537a mod M)

Smaller problems: fingerprintable, less
entropy
Major problem: can factor with a
variant of Coppersmith’s algoritm

E.g., 3 CPU months for a 1024-bit key

Side-channel attacks

Timing analysis:
Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired
Equivalent Privacy (WEP)

F&S: designed by a committee that
contained no cryptographers
Problem 1: note “privacy”: what about
integrity?

Nope: stream cipher + CRC = easy bit
flipping

WEP shared key

Single key known by all parties on
network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key
(export restrictions) plus 24-bit IV =
64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes
hours
Worse: random or everyone starts at zero



WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key,
similar IV)
First stream bytes used

Not a practical problem for other RC4
users like SSL

Key from a hash, skip first output bytes

New problem with WPA (CCS’17)

Session key set up in a 4-message
handshake
Key reinstallation attack: replay #3

Causes most implementations to reset
nonce and replay counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly
described in spec

Outside the scope of previous security
proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by
your adversary

In a public spec, most worrying are
unexplained elements

Best practice: choose constants from
well-known math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST
standard, based on elliptic curve

Looks like provable (slow enough!) but
strangely no proof

Specification includes long unexplained
constants
Academic researchers find:

Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of
constants allows prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to
US govt. FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by
Snowden leaks

NIST and RSA immediately recommend
withdrawal


