CSci 5271
Introduction to Computer Security
Web security, part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

The web from a security perspective

Once upon a time: the static web

) HTTP: stateless file download protocol
® TCP usually using port 80
©) HTML: markup language for text with
formatting and links
) All pages public, so no need for
authentication or encryption

Web applications

) The modern web depends heavily on
active software

) Static pages have ads, paywalls, or
“Edit” buttons

£) Many web sites are primarily forms or
storefronts

) Web hosted versions of desktop apps
like word processing

Server programs

©) Could be anything that outputs HTML

©) In practice, heavy use of databases and
frameworks

) Wide variety of commercial,
open-source, and custom-written
) Flexible scripting languages for ease of

development
= PHP. Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to
other uses
£) ActiveX: Windows-only binaries, no
sandboxing
® Glad to see it on the way out
©) Flash and Silverlight: most important
use is DRM-ed video

) Core language: JavaScript

JavaScript and the DOM

) JavaScript (JS) is a dynamically-typed
prototype-OO0 language
® No real similarity with Java
©) Document Object Model (DOM): lets JS
interact with pages and the browser

) Extensive security checks for
untrusted-code model

Same-origin policy

©) Origin is a tuple (scheme, host, port)
m Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed
only with the same origin
) Different sites are (mostly) isolated
applications

GET, POST, and cookies

) GET request loads a URL, may have
parameters delimited with 7, &, =
® Standard: should not have side-effects

) POST request originally for forms

® Can be larger, more hidden, have
side-effects

) Cookie: small token chosen by server,
sent back on subsequent requests to
same domain

User and attack models

) "Web attacker” owns their own site
(www.attacker.com)

® And users sometimes visit it
® Realistic reasons: ads, SEO

) "Network attacker” can view and sniff

unencrypted data
® Unprotected coffee shop WiFi

Outline

Announcements intermission

Note to early readers

£) This is the section of the slides most
likely to change in the final version

0 If class has already happened, make
sure you have the latest slides for
announcements

Outline

SQL injection

Relational model and SQL

£) Relational databases have tables with
rows and single-typed columns

©) Used in web sites (and elsewhere) to
provide scalable persistent storage

£) Allow complex queries in a declarative
language SQL

Example SQL queries

) SELECT name, grade FROM
Students WHERE grade < 60
ORDER BY name;

£) UPDATE Votes SET count =
count + 1 WHERE candidate =
’John’;

Template: injection attacks

©) Your program interacts with an
interpreted language

©) Untrusted data can be passed to the
interpreter

©) Attack data can break parsing
assumptions and execute arbitrary
commands

SQL + injection

©) Why is this named most critical web
app. risk?

) Easy mistake to make systematically

) Can be easy to exploit

) Database often has high-impact
contents

® E.g, logins or credit cards on commerce
site

Strings do not respect syntax

£) Key problem: assembling commands as
strings

£) "WHERE name = ’$name’ ;"

£) Looks like $name is a string

o Try
$name = "me’ OR grade > 80; --"

Using tautologies

) Tautology: formula that's always true

) Often convenient for attacker to see a
whole table

r) Classic: OR 1=1

Non-string interfaces

) Best fix: avoid constructing queries as
strings
) SQL mechanism: prepared statement
® Original motivation was performance
£) Web languages/frameworks often
provide other syntax

Retain functionality: escape

) Sanitizing data is transforming it to
prevent an attack
) Escaped data is encoded to match
language rules for literal
mEg,\"and\ninC
) But many pitfalls for the unwary:

m Differences in escape syntax between
servers

® Must use right escape for context: not
everything’s a string

Lazy sanitization: whitelisting

) Allow only things you know to be
safe/intended

) Error or delete anything else

) Short whitelist is easy and relatively
easy to secure

©) E.g, digits only for non-negative integer
£) But, tends to break benign functionality

Poor idea: blacklisting

) Space of possible attacks is endless,
don't try to think of them all

©) Want to guess how many more
comment formats SQL has?

) Particularly silly: blacklisting 1=1

Attacking without the program

) Often web attacks don't get to see the
program
® Not even binary, it's on the server
) Surmountable obstacle:

®m Guess natural names for columns
® Harvest information from error messages

Blind SQL injection

) Attacking with almost no feedback

©) Common: only “error” or “no error”

) One bit channel you can make yourself:
if (x) delay 10 seconds

) Trick to remember: go one character at
a time

Injection beyond SQL

£) XPath/XQuery: queries on XML data

) LDAP: queries used for authentication
) Shell commands: example from EX. 1

£) More web examples to come

Outline

Web authentication failures

Per-website authentication

£) Many web sites implement their own
login systems

+ If users pick unique passwords, little
systemic risk

— Inconvenient, many will reuse passwords

— Lots of functionality each site must
implement correctly

— Without enough framework support, many
possible pitfalls

Building a session

©) HTTP was originally stateless, but many
sites want stateful login sessions

©) Building by tying requests together with
a shared session ID

) Must protect confidentiality and
integrity

Session ID: what

) Must not be predictable
® Not a sequential counter
©) Should ensure freshness
® E.g, limited validity window
0 If encoding data in ID, must be

unforgeable
® Eg, data with properly used MAC
® Negative example: crypt(username ||
server secret)

Session ID: where

) Session IDs in URLs are prone to
leaking
® Including via user cut-and-paste
) Usual choice: non-persistent cookie
® Against network attacker, must send only
under HTTPS
) Because of CSRF (next time), should
also have a non-cookie unique ID

Session management

©) Create new session ID on each login
£ Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
m Needed to protect users who fail to log
out from public browsers

Account management

©) Limitations on account creation
®m CAPTCHA? Outside email address?
) See previous discussion on hashed
password storage
©) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

) For usability, interface should show
what's possible

£) But must not rely on client to perform
checks

) Attackers can read/modify anything on
the client side

©) Easy example: item price in hidden field

Direct object references

) Seems convenient: query parameter
names resource directly

® E.g, database key, filename (path
traversal)

) Easy to forget to validate on each use

) Alternative: indirect reference like
per-session table

® Not fundamentally more secure, but
harder to forget check

Function-level access control

©) E.g. pages accessed by URLs or
interface buttons

) Must check each time that user is
authorized

m Attack: find URL when authorized, reuse
when logged off

) Helped by consistent structure in code

Outline

Cross-site scripting

XSS: HTML/JS injection

"’

©) Note: CSS is “Cascading Style Sheets”
©) Another use of injection template

) Attacker supplies HTML containing
JavaScript (or occasionally CSS)
£) OWASP's most prevalent weakness

® A category unto itself
® Easy to commit in any dynamic page
construction

Why XSS is bad (and named that)

) attacker.com can send you evil JS
directly

) But XSS allows access to bank.com
data

©) Violates same-origin policy
) Not all attacks actually involve multiple
sites

Reflected XSS

©) Injected data used immediately in
producing a page

) Commonly supplied as query/form
parameters

) Classic attack is link from evil site to
victim site

Persistent XSS

) Injected data used to produce page
later

) For instance, might be stored in
database
) Can be used by one site user to attack

another user
® E.g, to gain administrator privilege

DOM-based XSS

©) Injected occurs in client-side page
construction

) Flaw at least partially in code running
on client

£) Many attacks involve mashups and
inter-site communication

No string-free solution

) For server-side XSS, no way to avoid
string concatenation
) Web page will be sent as text in the
end
® Research topic: ways to change this?

) XSS especially hard kind of injection

Danger: complex language embedding

) JS and CSS are complex languages in
their own right
) Can appear in various places with

HTML
® But totally different parsing rules
©) Example: "..." used for HTML

attributes and JS strings

® What happens when attribute contains
Js?

Danger: forgiving parsers

©) History: handwritten HTML, browser
competition

©) Many syntax mistakes given “likely”
interpretations

) Handling of incorrect syntax was not
standardized

Sanitization: plain text only

©) Easiest case: no tags intended, insert
at document text level

©) Escape HTML special characters with
entities like &1t ; for <

£) OWASP recommendation:
g <>" 2/

Sanitization: context matters

) An OWASP document lists 5 places in
a web page you might insert text
® For the rest, "don't do that”
©) Each one needs a very different kind of
escaping

Sanitization: tag whitelisting

©) In some applications, want to allow
benign markup like

£) But, even benign tags can have JS
attributes
©) Handling well essentially requires an
HTML parser
® But with an adversarial-oriented design

Don't blacklist

) Browser capabilities continue to evolve

) Attempts to list all bad constructs
inevitably incomplete

) Even worse for XSS than other
injection attacks

Filter failure: one-pass delete

) Simple idea: remove all occurrences of
<script>

) What happens to <scr<script>ipt>?

Filter failure: UTF-7

©) You may have heard of UTF-8
® Encode Unicode as 8-bit bytes

©) UTF-7 is similar but uses only ASCII

) Encoding can be specified in a <meta>
tag, or some browsers will guess

) +ADw-script+AD4-

Filter failure: event handlers

) Put this on something the user will be
tempted to click on
£) There are more than 100 handlers like
this recognized by various browsers

Use good libraries

) Coding your own defenses will never
work

) Take advantage of known good
implementations
) Best case: already built into your

framework
® Disappointingly rare

Content Security Policy

) New HTTP header, W3C candidate
recommendation
) Lets site opt-in to stricter treatment of
embedded content, such as:
® No inline JS, only loaded from separate
URLs
m Disable JS eval et al.
£) Has an interesting violation-reporting

mode

