
CSci 5271
Introduction to Computer Security

Day 16: Crypto protocols and “S” protocols
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Cryptographic protocols, pt. 1

Key distribution and PKI

Announcements intermission

SSL/TLS

DNSSEC

SSH

A couple more security goals

Non-repudiation: principal cannot later
deny having made a commitment

I.e., consider proving fact to a third party

Forward secrecy: recovering later
information does not reveal past
information

Motivates using Diffie-Hellman to generate
fresh keys for each session

Abstract protocols

Outline of what information is
communicated in messages

Omit most details of encoding, naming,
sizes, choice of ciphers, etc.

Describes honest operation
But must be secure against adversarial
participants

Seemingly simple, but many subtle
problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice
intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K

Example: simple authentication

A! B : A; fA;NgKA
E.g., Alice is key fob, Bob is garage door

Alice proves she possesses the
pre-shared key KA

Without revealing it directly

Using encryption for authenticity and
binding, not secrecy



Nonce

A! B : A; fA;NgKA
N is a nonce: a value chosen to make
a message unique

Best practice: pseudorandom

In constrained systems, might be a
counter or device-unique serial number

Replay attacks

A nonce is needed to prevent a
verbatim replay of a previous message
Garage door difficulty: remembering
previous nonces

Particularly: lunchtime/roommate/valet
scenario

Or, door chooses the nonce:
challenge-response authentication

Man-in-the-middle attacks

Gender neutral: middleperson attack

Adversary impersonates Alice to Bob
and vice-versa, relays messages

Powerful position for both
eavesdropping and modification

No easy fix if Alice and Bob aren’t
already related

Chess grandmaster problem

Variant or dual of MITM

Adversary forwards messages to
simulate capabilities with his own
identity

How to win at correspondence chess

Anderson’s MiG-in-the-middle

Outline

Cryptographic protocols, pt. 1

Key distribution and PKI

Announcements intermission

SSL/TLS

DNSSEC

SSH

Public key authenticity

Public keys don’t need to be secret, but
they must be right

Wrong key ! can’t stop MITM

So we still have a pretty hard
distribution problem



Symmetric key servers

Users share keys with server, server
distributes session keys

Symmetric key-exchange protocols, or
channels

Standard: Kerberos

Drawback: central point of trust

Certificates

A name and a public key, signed by
someone else

CA = SignS(A;KA)

Basic unit of transitive trust

Commonly use a complex standard
“X.509”

Certificate authorities

“CA” for short: entities who sign
certificates

Simplest model: one central CA

Works for a single organization, not the
whole world

Web of trust

Pioneered in PGP for email encryption

Everyone is potentially a CA: trust
people you know
Works best with security-motivated
users

Ever attended a key signing party?

CA hierarchies

Organize CAs in a tree

Distributed, but centralized (like DNS)

Check by follow a path to the root

Best practice: sub CAs are limited in
what they certify

PKI for authorization

Enterprise PKI can link up with
permissions

One approach: PKI maps key to name,
ACL maps name to permissions
Often better: link key with permissions
directly, name is a comment

More like capabilities



The revocation problem

How can we make certs “go away”
when needed?

Impossible without being online
somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

Cryptographic protocols, pt. 1

Key distribution and PKI

Announcements intermission

SSL/TLS

DNSSEC

SSH

Note to early readers

This is the section of the slides most
likely to change in the final version

If class has already happened, make
sure you have the latest slides for
announcements

Outline

Cryptographic protocols, pt. 1

Key distribution and PKI

Announcements intermission

SSL/TLS

DNSSEC

SSH

SSL/TLS

Developed at Netscape in early days of
the public web

Usable with other protocols too, e.g. IMAP

SSL 1.0 pre-public, 2.0 lasted only one
year, 3.0 much better
Renamed to TLS with RFC process

TLS 1.0 improves SSL 3.0

TLS 1.1 and 1.2 in 2006 and 2008, only
gradual adoption

IV chaining vulnerability

TLS 1.0 uses previous ciphertext for
CBC IV
But, easier to attack in TLS:

More opportunities to control plaintext
Can automatically repeat connection

“BEAST” automated attack in 2011: TLS
1.1 wakeup call



Compression oracle vuln.

Compr(S k A), where S should be
secret and A is attacker-controlled

Attacker observes ciphertext length

If A is similar to S, combination
compresses better

Compression exists separately in HTTP
and TLS

But wait, there’s more!

Too many vulnerabilities to mention
them all in lecture
Kaloper-Meršinjak et al. have longer list

“Lessons learned” are variable, though

Meta-message: don’t try this at home

HTTPS hierarchical PKI

Browser has order of 100 root certs
Not same set in every browser
Standards for selection not always clear

Many of these in turn have sub-CAs

Also, “wildcard” certs for individual
domains

Hierarchical trust?

No. Any CA can sign a cert for any
domain

A couple of CA compromises recently

Most major governments, and many
companies you’ve never heard of, could
probably make a google.com cert

Still working on: make browser more
picky, compare notes

CA vs. leaf checking bug

Certs have a bit that says if they’re a
CA

All but last entry in chain should have it
set

Browser authors repeatedly fail to
check this bit

Allows any cert to sign any other cert

MD5 certificate collisions

MD5 collisions allow forging CA certs

Create innocuous cert and CA cert with
same hash

Requires some guessing what CA will do,
like sequential serial numbers
Also 200 PS3s

Oh, should we stop using that hash
function?



CA validation standards

CA’s job to check if the buyer really is
foo.com

Race to the bottom problem:
CA has minimal liability for bad certs
Many people want cheap certs
Cost of validation cuts out of profit

“Extended validation” (green bar) certs
attempt to fix

HTTPS and usability

Many HTTPS security challenges tied
with user decisions

Is this really my bank?

Seems to be a quite tricky problem
Security warnings often ignored, etc.
We’ll return to this as a major example
later

Outline

Cryptographic protocols, pt. 1

Key distribution and PKI

Announcements intermission

SSL/TLS

DNSSEC

SSH

DNS: trusted but vulnerable

Almost every higher-level service
interacts with DNS
UDP protocol with no authentication or
crypto

Lots of attacks possible

Problems known for a long time, but
challenge to fix compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability

First cut: signatures and certificates

Each resource record gets an RRSIG

signature
E.g., A record for one name!address
mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY

RRs

Recursive chain up to the root (or other
“anchor”)



Add more indirection

DNS needs to scale to very large flat
domains like .com

Facilitated by having single DS RR in
parent indicating delegation

Chain to root now includes DSes as well

Negative answers

Also don’t want attackers to spoof
non-existence

Gratuitous denial of service, force fallback,
etc.

But don’t want to sign “x does not
exist” for all x

Solution 1, NSEC: “there is no name
between acacia and baobab”

Preventing zone enumeration

Many domains would not like people
enumerating all their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses
password-like salt and repeated hash,
allows opt-out

DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named
Entities”

DNS contains hash of TLS cert, don’t
need CAs

How is DNSSEC’s tree of certs better
than TLS’s?

Signing the root

Political problem: many already distrust
US-centered nature of DNS
infrastructure

Practical problem: must be very secure
with no single point of failure
Finally accomplished in 2010

Solution involves ‘key ceremonies’,
international committees, smart cards,
safe deposit boxes, etc.

Deployment

Standard deployment problem: all cost
and no benefit to being first mover

Servers working on it, mostly top-down

Clients: still less than 20%

Will be probably common: insecure
connection to secure resolver



What about privacy?

Users increasingly want privacy for
their DNS queries as well
Older DNSCurve and DNSCrypt
protocols were not standardized
More recent “DNS over TLS” and “DNS
over HTTPS” are RFCs
DNS over HTTPS in major browsers
might have serious centralization
effects

Outline

Cryptographic protocols, pt. 1

Key distribution and PKI

Announcements intermission

SSL/TLS

DNSSEC

SSH

Short history of SSH

Started out as freeware by Tatu Ylönen
in 1995

Original version commercialized

Fully open-source OpenSSH from
OpenBSD

Protocol redesigned and standardized
for “SSH 2”

OpenSSH t-shirt

SSH host keys

Every SSH server has a public/private
keypair

Ideally, never changes once SSH is
installed
Early generation a classic entropy
problem

Especially embedded systems, VMs

Authentication methods

Password, encrypted over channel

.shosts: like .rhosts, but using client
host key
User-specific keypair

Public half on server, private on client

Plugins for Kerberos, PAM modules, etc.



Old crypto vulnerabilities

1.x had only CRC for integrity
Worst case: when used with RC4

Injection attacks still possible with CBC
CRC compensation attack

For least-insecure 1.x-compatibility,
attack detector

Alas, detector had integer overflow
worse than original attack

Newer crypto vulnerabilities

IV chaining: IV based on last message
ciphertext

Allows chosen plaintext attacks
Better proposal: separate, random IVs

Some tricky attacks still left
Send byte-by-byte, watch for errors
Of arguable exploitability due to abort

Now migrating to CTR mode

SSH over SSH

SSH to machine 1, from there to
machine 2

Common in these days of NATs

Better: have machine 1 forward an
encrypted connection (cf. HW1)

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

When you connect to a host freshly, a
mild note

When the host key has changed, a
large warning

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!
It is also possible that a host key has just been changed.


