CSci 5271
Introduction to Computer Security
"S" protocols and web security
combined lecture

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline
Key distribution and PKI

Public key authenticity

) Public keys don't need to be secret, but
they must be right

©) Wrong key — can't stop MITM

) So we still have a pretty hard
distribution problem

Symmetric key servers

) Users share keys with server, server
distributes session keys

£) Symmetric key-exchange protocols, or
channels

©) Standard: Kerberos
©) Drawback: central point of trust

Certificates

©) A name and a public key, signed by

someone else
mChr= Sian(A, Ka)

) Basic unit of transitive trust

©) Commonly use a complex standard
"X.509"

Certificate authorities

) "CA” for short: entities who sign
certificates

) Simplest model: one central CA

) Works for a single organization, not the
whole world

Web of trust

) Pioneered in PGP for email encryption

) Everyone is potentially a CA: trust
people you know

©) Works best with security-motivated
users
® Ever attended a key signing party?

CA hierarchies

©) Organize CAs in a tree
) Distributed, but centralized (like DNS)
) Check by follow a path to the root

) Best practice: sub CAs are limited in
what they certify

PKI for authorization

©) Enterprise PKI can link up with
permissions

) One approach: PKI maps key to name,
ACL maps name to permissions

) Often better: link key with permissions

directly, name is a comment
® More like capabilities

The revocation problem

©) How can we make certs “"go away”
when needed?

) Impossible without being online
somehow

1. Short expiration times
2. Certificate revocation lists
3. Certificate status checking

Outline

SSH

Short history of SSH

) Started out as freeware by Tatu YI6nen
in 1995

©) Original version commercialized

) Fully open-source OpenSSH from
OpenBSD

) Protocol redesigned and standardized
for "SSH 2"

OpenSSH t-shirt

www-OpenSSH.: < o ~

Putting an end to unencrypted network logins

SSH host keys

) Every SSH server has a public/private
keypair
) Ideally, never changes once SSH is
installed
) Early generation a classic entropy
problem
® Especially embedded systems, VMs

Authentication methods

) Password, encrypted over channel
) .shosts: like .rhosts, but using client
host key
) User-specific keypair
® Public half on server, private on client

) Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

©) 1x had only CRC for integrity
® Worst case: when used with RC4
) Injection attacks still possible with CBC
® CRC compensation attack
) For least-insecure 1x-compatibility,
attack detector
©) Alas, detector had integer overflow
worse than original attack

Newer crypto vulnerabilities

0 IV chaining: IV based on last message

ciphertext
® Allows chosen plaintext attacks
® Better proposal: separate, random IVs

) Some ftricky attacks still left

® Send byte-by-byte, watch for errors
® Of arguable exploitability due to abort

) Now migrating to CTR mode

SSH over SSH

) SSH to machine 1, from there to

machine 2
®m Common in these days of NATs

) Better: have machine 1 forward an
encrypted connection (cf. HW1)

1. No need to trust 1 for secrecy
2. Timing attacks against password typing

SSH (non-)PKI

©) When you connect to a host freshly, a
mild note

©) When the host key has changed, a
large warning

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! Q

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!

It is also possible that a host key has just been changed.

Outline

DNSSEC

DNS: trusted but vulnerable

©) Almost every higher-level service
interacts with DNS
) UDP protocol with no authentication or

crypto

® Lots of attacks possible

) Problems known for a long time, but
challenge to fix compatibly

DNSSEC goals and non-goals

-+ Authenticity of positive replies
-+ Authenticity of negative replies
+ Integrity

— Confidentiality

— Availability

First cut: signatures and certificates

) Each resource record gets an RRSIG
signature
® EQg, A record for one name—address

mapping
® Observe: signature often larger than data

©) Signature validation keys in DNSKEY
RRs

) Recursive chain up to the root (or other
“anchor”)

Add more indirection

£) DNS needs to scale to very large flat
domains like .com

) Facilitated by having single DS RR in
parent indicating delegation

) Chain to root now includes DSes as well

Negative answers

) Also don't want attackers to spoof
non-existence

® Gratuitous denial of service, force fallback,
etc.

©) But don't want to sign “x does not
exist” for all x

) Solution 1, NSEC: “there is no nhame
between acacia and baobab”

Preventing zone enumeration

£) Many domains would not like people
enumerating all their entries

) DNS is public, but "not that public”

) Unfortunately NSEC makes this trivial

) Compromise: NSEC3 uses
password-like salt and repeated hash,
allows opt-out

DANE: linking TLS to DNSSEC

) "DNS-based Authentication of Named
Entities”

) DNS contains hash of TLS cert, don't
need CAs

) How is DNSSEC's tree of certs better
than TLS's?

Signing the root

) Political problem: many already distrust
US-centered nature of DNS
infrastructure

) Practical problem: must be very secure
with no single point of failure
) Finally accomplished in 2010

® Solution involves ‘key ceremonies’,
international committees, smart cards,
safe deposit boxes, etc.

Deployment

) Standard deployment problem: all cost
and no benefit to being first mover

) Servers working on it, mostly top-down
©) Clients: still less than 20%

) Will be probably common: insecure
connection to secure resolver

What about privacy?

£) Users increasingly want privacy for
their DNS queries as well

) Older DNSCurve and DNSCrypt
protocols were not standardized

£) More recent "DNS over TLS” and "DNS
over HTTPS” are RFCs

©) DNS over HTTPS in major browsers
might have serious centralization
effects

Outline

Announcements intermission

HAZ2 group reqistration

) Default will be to keep same groups as
for HAI
©) If you want to have a different group,
email Aditya by Friday
m Still at most 2 students

Other upcoming deadlines

) Next project progress reports are due
Monday 4/1

Outline

SSL/TLS

SSL/TLS

) Developed at Netscape in early days of
the public web
m Usable with other protocols too, eg. IMAP
) SSL 10 pre-public, 2.0 lasted only one
year, 3.0 much better
©) Renamed to TLS with RFC process
® TLS 10 improves SSL 3.0
©) TLS 11 and 1.2 in 2006 and 2008, only
gradual adoption

IV chaining vulnerability

) TLS 10 uses previous ciphertext for

CBC IV
) Fairly easy to attack in TLS:

® More opportunities to control plaintext
® Can automatically repeat connection

) "BEAST” automated attack in 2011: TLS
11 wakeup call

Compression oracle vuin.

) Compr(S || A), where S should be
secret and A is attacker-controlled

) Attacker observes ciphertext length

o If A is similar to S, combination
compresses better

) Compression exists separately in HTTP
and TLS

But wait, there’s more!

£) Too many vulnerabilities to mention

them all in lecture
) Kaloper-Mersinjak et al. have longer list
® "Lessons learned” are variable, though

£) Meta-message: don't try this at home

HTTPS hierarchical PKI

) Browser has order of 100 root certs

® Not same set in every browser
® Standards for selection not always clear

©) Many of these in turn have sub-CAs

) Also, “wildcard” certs for individual
domains

Hierarchical trust?

£) No. Any CA can sign a cert for any
domain

©) A couple of CA compromises recently

) Most major governments, and many
companies you've never heard of, could
probably make a google.com cert

) Still working on: make browser more
picky, compare notes

CA vs. leaf checking bug

©) Certs have a bit that says if they're a
CA

©) All but last entry in chain should have it
set

) Browser authors repeatedly fail to
check this bit

) Allows any cert to sign any other cert

MDS5 certificate collisions

) MD5 collisions allow forging CA certs

) Create innocuous cert and CA cert with
same hash

® Requires some guessing what CA will do,
like sequential serial numbers
® Also 200 PS3s

) Oh, should we stop using that hash
function?

CA validation standards

) CA's job to check if the buyer really is
foo.com
©) Race to the bottom problem:

® CA has minimal liability for bad certs
® Many people want cheap certs
® Cost of validation cuts out of profit

) "Extended validation” (green bar) certs
attempt to fix

HTTPS and usability

£) Many HTTPS security challenges tied
with user decisions

£) Is this really my bank?

£) Seems to be a quite tricky problem

® Security warnings often ignored, etc.
®m We'll return to this as a major example
later

Outline

The web from a security perspective

Once upon a time: the static web

©) HTTP: stateless file download protocol
® TCP usually using port 80
) HTML: markup language for text with
formatting and links
©) All pages public, so no need for
authentication or encryption

Web applications

©) The modern web depends heavily on
active software

) Static pages have ads, paywalls, or
“Edit” buttons

) Many web sites are primarily forms or
storefronts

) Web hosted versions of desktop apps
like word processing

Server programs

) Could be anything that outputs HTML

©) In practice, heavy use of databases and
frameworks

£) Wide variety of commercial,
open-source, and custom-written
) Flexible scripting languages for ease of

development
= PHP Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to
other uses
©) ActiveX: Windows-only binaries, no
sandboxing
® Glad to see it on the way out
) Flash and Silverlight: most important
use is DRM-ed video

) Core language: JavaScript

JavaScript and the DOM

) JavaScript (JS) is a dynamically-typed
prototype-OO0 language
® No real similarity with Java
©) Document Object Model (DOM): lets JS
interact with pages and the browser

) Extensive security checks for
untrusted-code model

Same-origin policy

) Origin is a tuple (scheme, host, port)
® E.g, (http, www.umn.edu, 80)
) Basic JS rule: interaction is allowed
only with the same origin
©) Different sites are (mostly) isolated
applications

GET, POST, and cookies

£) GET request loads a URL, may have
parameters delimited with 7, &, =
® Standard: should not have side-effects

£) POST request originally for forms

® Can be larger, more hidden, have
side-effects

£) Cookie: small token chosen by server,
sent back on subsequent requests to
same domain

User and attack models

©) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
) "Network attacker” can view and sniff
unencrypted data
® Unprotected coffee shop WiFi

Outline

SQL injection

Relational model and SQL

) Relational databases have tables with
rows and single-typed columns

©) Used in web sites (and elsewhere) to
provide scalable persistent storage

) Allow complex queries in a declarative
language SQL

Example SQL queries

) SELECT name, grade FROM
Students WHERE grade < 60
ORDER BY name;

) UPDATE Votes SET count =
count + 1 WHERE candidate =
’John’ ;

Template: injection attacks

©) Your program interacts with an
interpreted language

) Untrusted data can be passed to the
interpreter

) Attack data can break parsing
assumptions and execute arbitrary
commands

SQL + injection

£) Why is this named most critical web
app. risk?

) Easy mistake to make systematically

£) Can be easy to exploit

) Database often has high-impact
contents

® E.g, logins or credit cards on commerce
site

Strings do not respect syntax

) Key problem: assembling commands as
strings

) "WHERE name = ’$name’ ;"

©) Looks like $name is a string

oOTry
$name = "me’ OR grade > 80; --"

Using tautologies

) Tautology: formula that's always true

r) Often convenient for attacker to see a
whole table

r) Classic: OR 1=1

Non-string interfaces

) Best fix: avoid constructing queries as
strings
©) SQL mechanism: prepared statement
® Original motivation was performance
) Web languages/frameworks often
provide other syntax

Retain functionality: escape

©) Sanitizing data is transforming it to

prevent an attack
) Escaped data is encoded to match
language rules for literal
mEg,\"and \ninC
£) But many pitfalls for the unwary:

® Differences in escape syntax between
servers

® Must use right escape for context: not
everything’s a string

Lazy sanitization: whitelisting

) Allow only things you know to be
safe/intended

) Error or delete anything else

) Short whitelist is easy and relatively
easy to secure

) Eg, digits only for non-negative integer
) But, tends to break benign functionality

Poor idea: blacklisting

) Space of possible attacks is endless,
don't try to think of them all

£) Want to guess how many more
comment formats SQL has?

©) Particularly silly: blacklisting 1=1

Attacking without the program

) Often web attacks don't get to see the
program
® Not even binary, it's on the server
©) Surmountable obstacle:

® Guess natural names for columns
® Harvest information from error messages

Blind SQL injection

) Attacking with almost no feedback

£) Common: only “error” or “no error”

£) One bit channel you can make yourself:
if (x) delay 10 seconds

) Trick to remember: go one character at
a time

Injection beyond SQL

) XPath/XQuery: queries on XML data

) LDAP: queries used for authentication
©) Shell commands: example from Ex. 1

) More web examples to come

Outline

Web authentication failures

Per-website authentication

©) Many web sites implement their own
login systems

+ If users pick unigue passwords, little
systemic risk

— Inconvenient, many will reuse passwords

— Lots of functionality each site must
implement correctly

— Without enough framework support, many
possible pitfalls

Building a session

©) HTTP was originally stateless, but many
sites want stateful login sessions

) Building by tying requests together with
a shared session ID

) Must protect confidentiality and
integrity

Session ID: what

©) Must not be predictable
® Not a sequential counter
) Should ensure freshness
® E.g, limited validity window
) If encoding data in ID, must be

unforgeable
® E.g, data with properly used MAC
® Negative example: crypt(username ||
server secret)

Session ID: where

) Session IDs in URLs are prone to
leaking
® Including via user cut-and-paste
) Usual choice: non-persistent cookie
® Against network attacker, must send only
under HTTPS
) Because of CSRF (next time), should
also have a non-cookie unique ID

Session management

) Create new session ID on each login
) Invalidate session on logout

) Invalidate after timeout

m Usability / security tradeoff
® Needed to protect users who fail to log
out from public browsers

Account management

©) Limitations on account creation
®m CAPTCHA? Outside email address?
) See previous discussion on hashed
password storage
©) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

) For usability, interface should show
what's possible

) But must not rely on client to perform
checks

) Attackers can read/modify anything on
the client side

) Easy example: item price in hidden field

Direct object references

£) Seems convenient: query parameter

names resource directly
m Eg, database key, filename (path
traversal)

) Easy to forget to validate on each use

) Alternative: indirect reference like

per-session table
® Not fundamentally more secure, but
harder to forget check

Function-level access control

©) Eg. pages accessed by URLs or
interface buttons
) Must check each time that user is

authorized
m Attack: find URL when authorized, reuse
when logged off

) Helped by consistent structure in code

