
CSci 5271
Introduction to Computer Security

Day 15: Cryptography part 2: public-key
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Public-key crypto basics

Announcements

Public key encryption and signatures

Pre-history of public-key crypto

First invented in secret at GCHQ

Proposed by Ralph Merkle for UC
Berkeley grad. security class project

First attempt only barely practical
Professor didn’t like it

Merkle then found more sympathetic
Stanford collaborators named Diffie and
Hellman

Box and locks analogy

Alice wants to send Bob a gift in a
locked box

They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by
Bob, or vice-versa

Box and locks analogy

Alice wants to send Bob a gift in a
locked box

They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by
Bob, or vice-versa

Math perspective: physical locks
commute

Protocol with clip art



Protocol with clip art Protocol with clip art

Protocol with clip art Public key primitives

Public-key encryption (generalizes
block cipher)

Separate encryption key EK (public) and
decryption key DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and
verification key VK (public)

Modular arithmetic

Fix modulus n, keep only remainders
mod n

mod 12: clock face; mod 2
32: unsigned

int

+, -, and � work mostly the same

Division: see Exercise Set 1

Exponentiation: efficient by square and
multiply

Generators and discrete log

Modulo a prime p, non-zero values and
� have a nice (“group”) structure

g is a generator if g0; g; g2; g3; : : :
cover all elements

Easy to compute x 7! gx

Inverse, discrete logarithm, hard for
large p



Diffie-Hellman key exchange

Goal: anonymous key exchange

Public parameters p, g; Alice and Bob
have resp. secrets a, b

Alice!Bob: A = ga (mod p)

Bob!Alice: B = gb (mod p)

Alice computes Ba = gba = k

Bob computes Ab = gab = k

Relationship to a hard problem

We’re not sure discrete log is hard
(likely not even NP-complete), but it’s
been unsolved for a long time

If discrete log is easy (e.g., in P), DH is
insecure

Converse might not be true: DH might
have other problems

Categorizing assumptions

Math assumptions unavoidable, but can
categorize

E.g., build more complex scheme,
shows it’s “as secure” as DH because it
has the same underlying assumption

Commonly “decisional” (DDH) and
“computational” (CDH) variants

Key size, elliptic curves

Need key sizes �10 times larger then
security level

Attacks shown up to about 768 bits

Elliptic curves: objects from higher math
with analogous group structure

(Only tenuously connected to ellipses)

Elliptic curve algorithms have smaller
keys, about 2� security level

Outline

Public-key crypto basics

Announcements

Public key encryption and signatures

Note to early readers

This is the section of the slides most
likely to change in the final version

If class has already happened, make
sure you have the latest slides for
announcements



Outline

Public-key crypto basics

Announcements

Public key encryption and signatures

General description

Public-key encryption (generalizes
block cipher)

Separate encryption key EK (public) and
decryption key DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and
verification key VK (public)

RSA setup

Choose n = pq, product of two large
primes, as modulus

n is public, but p and q are secret

Compute encryption and decryption
exponents e and d such that

Med =M (mod n)

RSA encryption

Public key is (n; e)

Encryption of M is C =Me (mod n)

Private key is (n; d)

Decryption of C is Cd =Med =M

(mod n)

RSA signature

Signing key is (n; d)

Signature of M is S =Md (mod n)

Verification key is (n; e)

Check signature by Se =Mde =M

(mod n)

Note: symmetry is a nice feature of
RSA, not shared by other systems

RSA and factoring

We’re not sure factoring is hard (likely
not even NP-complete), but it’s been
unsolved for a long time

If factoring is easy (e.g., in P), RSA is
insecure

Converse might not be true: RSA might
have other problems



Homomorphism

Multiply RSA ciphertexts ) multiply
plaintexts

This homomorphism is useful for some
interesting applications
Even more powerful: fully homomorphic
encryption (e.g., both + and �)

First demonstrated in 2009; still very
inefficient

Problems with vanilla RSA

Homomorphism leads to
chosen-ciphertext attacks

If message and e are both small
compared to n, can compute M1=e

over the integers

Many more complex attacks too

Hybrid encryption

Public-key operations are slow

In practice, use them just to set up
symmetric session keys

+ Only pay RSA costs at setup time

- Breaks at either level are fatal

Padding, try #1

Need to expand message (e.g., AES
key) size to match modulus

PKCS#1 v. 1.5 scheme: prepend 00 01
FF FF .. FF

Surprising discovery
(Bleichenbacher’98): allows adaptive
chosen ciphertext attacks on SSL

Modern “padding”

Much more complicated encoding
schemes using hashing, random salts,
Feistel-like structures, etc.

Common examples: OAEP for
encryption, PSS for signing

Progress driven largely by improvement
in random oracle proofs

Simpler padding alternative

“Key encapsulation mechanism” (KEM)

For common case of public-key crypto
used for symmetric-key setup

Also applies to DH

Choose RSA message r at random
mod n, symmetric key is H(r)

- Hard to retrofit, RSA-KEM insecure if e
and r reused with different n



Box and locks revisited

Alice and Bob’s box scheme fails if an
intermediary can set up two sets of
boxes

Man-in-the-middle (or middleperson)
attack

Real world analogue: challenges of
protocol design and public key
distribution

Next time

Building crypto into more complex
protocols


