CSci 5271
Introduction to Computer Security
Day 15: Cryptography part 2: public-key

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Public-key crypto basics

Pre-history of public-key crypto

) First invented in secret at GCHQ

) Proposed by Ralph Merkle for UC
Berkeley grad. security class project

® First attempt only barely practical
® Professor didn't like it

) Merkle then found more sympathetic
Stanford collaborators named Diffie and
Hellman

Box and locks analogy

©) Alice wants to send Bob a gift in a
locked box
® They don't share a key
® Can't send key separately, don't trust UPS
® Box locked by Alice can't be opened by
Bob, or vice-versa

Box and locks analogy

) Alice wants to send Bob a qift in a
locked box

® They don't share a key

® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by
Bob, or vice-versa

) Math perspective: physical locks
commute

Protocol with clip art

Alice Bob

Alice Bob




Protocol with clip art

Alice Bob

® n

Alice Bob

Protocol with clip art

Alice Bob

Alice Bob

Protocol with clip art

Alice Bob

Alice Bob

Public key primitives

) Public-key encryption (generalizes
block cipher)
® Separate encryption key EK (public) and
decryption key DK (secret)
) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and
verification key VK (public)

Modular arithmetic

) Fix modulus n, keep only remainders
mod n

® mod 12: clock face; mod 2% unsigned
int

) +, —, and x work mostly the same
) Division: see Exercise Set 1

) Exponentiation: efficient by square and
multiply

Generators and discrete log

£) Modulo a prime p, non-zero values and
x have a nice (“group”) structure

) g is a generator if ¢°, g, g%, ¢>, ...
cover all elements

) Easy to compute x — g*

©) Inverse, discrete logarithm, hard for
large p




Diffie-Hellman key exchange

) Goal: anonymous key exchange

) Public parameters p, g; Alice and Bob
have resp. secrets a, b

£) Alice—Bob: A =g* (mod p)
) Bob—Alice: B = g® (mod p)
) Alice computes B¢ = g®* =k
) Bob computes A = g®® =k

Relationship to a hard problem

£) We're not sure discrete log is hard
(likely not even NP-complete), but it's
been unsolved for a long time

0 If discrete log is easy (eg, in P), DH is
insecure

) Converse might not be true: DH might
have other problems

Categorizing assumptions

) Math assumptions unavoidable, but can
categorize

©) E.g, build more complex scheme,
shows it's “as secure” as DH because it
has the same underlying assumption

) Commonly “decisional” (DDH) and
“computational” (CDH) variants

Key size, elliptic curves

©) Need key sizes ~10 times larger then
security level
m Attacks shown up to about 768 bits
) Elliptic curves: objects from higher math
with analogous group structure
® (Only tenuously connected to ellipses)
) Elliptic curve algorithms have smaller
keys, about 2x security level

Outline

Announcements

Note to early readers

£) This is the section of the slides most
likely to change in the final version

0 If class has already happened, make
sure you have the latest slides for
announcements




Outline

Public key encryption and signatures

General description

©) Public-key encryption (generalizes
block cipher)
® Separate encryption key EK (public) and
decryption key DK (secret)
©) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and
verification key VK (public)

RSA setup

) Choose n = pq, product of two large
primes, as modulus

) n is public, but p and q are secret

©) Compute encryption and decryption
exponents e and d such that

M =M (modn)

RSA encryption

) Public key is (n,e)

©) Encryption of M is C = M*® (mod n)

) Private key is (n, d)

) Decryption of C is C¢ = M =M
(mod n)

RSA signature

) Signing key is (n, d)

) Signature of M is S = M¢ (mod n)

) Verification key is (n, e)

©) Check signature by S¢ = Md¢ = M
(mod n)

) Note: symmetry is a nice feature of
RSA, not shared by other systems

RSA and factoring

) We're not sure factoring is hard (likely
not even NP-complete), but it's been
unsolved for a long time

) If factoring is easy (e, in P), RSA is
insecure

) Converse might not be true: RSA might
have other problems




Homomorphism

) Multiply RSA ciphertexts = multiply
plaintexts

) This homomorphism is useful for some
interesting applications

) Even more powerful: fully homomorphic
encryption (e.g., both + and x)

® First demonstrated in 2009; still very
inefficient

Problems with vanilla RSA

£) Homomorphism leads to
chosen-ciphertext attacks

©) If message and e are both small
compared to n, can compute M'/¢
over the integers

£) Many more complex attacks too

Hybrid encryption

) Public-key operations are slow

©) In practice, use them just to set up
symmetric session keys

-+ Only pay RSA costs at setup time
— Breaks at either level are fatal

Padding, try #1

©) Need to expand message (e.q., AES
key) size to match modulus

) PKCS#1 v. 15 scheme: prepend 00 01
FF FF .. FF

) Surprising discovery
(Bleichenbacher'98). allows adaptive
chosen ciphertext attacks on SSL

Modern “padding”

) Much more complicated encoding
schemes using hashing, random salts,
Feistel-like structures, etc.

) Common examples: OAEP for
encryption, PSS for signing

) Progress driven largely by improvement
in random oracle proofs

Simpler padding alternative

) "Key encapsulation mechanism” (KEM)

) For common case of public-key crypto
used for symmetric-key setup
® Also applies to DH
) Choose RSA message r at random
mod n, symmetric key is H(r)
— Hard to retrofit, RSA-KEM insecure if e
and r reused with different n




Box and locks revisited Next time

) Alice and Bob's box scheme fails if an
intermediary can set up two sets of

boxes iding crypto int |
® Man-in-the-middle (or middieperson) © Building crypto into more complex
attack protocols

©) Real world analogue: challenges of
protocol design and public key
distribution




