
CSci 5271
Introduction to Computer Security

Day 13: Network, etc., security overview
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Brief introduction to networking

Announcements intermission

BCECHO

Some classic network attacks

Second half of course

The Internet

A bunch of computer networks
voluntarily interconnected

Capitalized because there’s really only
one
No centralized network-level
management

But technical collaboration, DNS, etc.

Layered model (OSI)

7. Application (HTTP)

6. Presentation (MIME?)

5. Session (SSL?)

4. Transport (TCP)

3. Network (IP)

2. Data-link (PPP)

1. Physical (10BASE-T)

Layered model: TCP/IP Packet wrapping



IP(v4) addressing

Interfaces (hosts or routers) identified
by 32-bit addresses

Written as four decimal bytes, e.g.
192.168.10.2

First k bits identify network, 32- k

host within network
Can’t (anymore) tell k from the bits

We’ll run out any year now

IP and ICMP

Internet Protocol (IP) forwards individual
packets

Packets have source and destination
addresses, other options

Automatic fragmentation (usually
avoided)

ICMP (I Control Message P) adds
errors, ping packets, etc.

UDP

User Datagram Protocol: thin wrapper
around IP

Adds source and destination port
numbers (each 16-bit)

Still connectionless, unreliable

OK for some small messages

TCP

Transmission Control Protocol: provides
reliable bidirectional stream abstraction

Packets have sequence numbers,
acknowledged in order

Missed packets resent later

Flow and congestion control

Flow control: match speed to slowest
link

“Window” limits number of packets sent
but not ACKed

Congestion control: avoid traffic jams
Lost packets signal congestion
Additive increase, multiplicative decrease
of rate

Routing

Where do I send this packet next?
Table from address ranges to next hops

Core Internet routers need big tables

Maintained by complex, insecure,
cooperative protocols

Internet-level algorithm: BGP (Border
Gateway Protocol)



Below IP: ARP

Address Resolution Protocol maps IP
addresses to lower-level address

E.g., 48-bit Ethernet MAC address

Based on local-network broadcast
packets

Complex Ethernets also need their own
routing (but called switches)

DNS

Domain Name System: map more
memorable and stable string names to
IP addresses
Hierarchically administered namespace

Like Unix paths, but backwards

.edu server delegates to .umn.edu

server, etc.

DNS caching and reverse DNS

To be practical, DNS requires caching
Of positive and negative results

But, cache lifetime limited for freshness

Also, reverse IP to name mapping
Based on special top-level domain, IP
address written backwards

Classic application: remote login

Killer app of early Internet: access
supercomputers at another university
Telnet: works cross-OS

Send character stream, run regular login
program

rlogin: BSD Unix
Can authenticate based on trusting
computer connection comes from
(Also rsh, rcp)

Outline

Brief introduction to networking

Announcements intermission

BCECHO

Some classic network attacks

Second half of course

BCMTA 1.1 released

There was a backdoor with the
recipient address
allma001@localhost

Message contents sent directly to a root
shell, RCPT_ROOTSHELL

Download new code and remake to
update your VM

New exploits due Friday night



Don’t forget to test-exploit

Starting this week, most points depend
on your exploit working automatically

Was not checked in week 0, but many
submissions would not have worked

Reliable execution is harder with more
advanced exploits

Don’t leave this until the very last
minute

Outline

Brief introduction to networking

Announcements intermission

BCECHO

Some classic network attacks

Second half of course

BCECHO code

void print_arg(char *str) {

char buf[20]; int len;

int buf_sz = (sizeof(buf)-sizeof(NULL))

* sizeof(char *);

len = strlcpy(buf, str, buf_sz);

if (len > buf_sz) {

fprintf(stderr,"Trucation occured "

"when printing %s\n", str);

}

fwrite(buf, sizeof(char), len, stdout);

}

Attack planning

Looks like candidate for classic
stack-smash
First question: where to put the attack
value

Via disassembly inspection
Via GDB
Via experimentation

Overwriting the return address More attacker techniques

Modifying a system file

n0-free shellcoding

Shellcode in an environment variable



Shellcode concept

fd = open("/etc/passwd",

O_WRONLY|O_APPEND);

write(fd, "pwned\n", 6);

Outline

Brief introduction to networking

Announcements intermission

BCECHO

Some classic network attacks

Second half of course

Packet sniffing

Watch other people’s traffic as it goes
by on network
Easiest on:

Old-style broadcast (thin, “hub”) Ethernet
Wireless

Or if you own the router

Forging packet sources

Source IP address not involved in
routing, often not checked

Change it to something else!

Might already be enough to fool a naive
UDP protocol

TCP spoofing

Forging source address only lets you
talk, not listen

Old attack: wait until connection
established, then DoS one participant
and send packets in their place
Frustrated by making TCP initial
sequence numbers unpredictable

But see Oakland’12, WOOT’12 for fancier
attacks, keyword “off-path”

ARP spoofing

Impersonate other hosts on local
network level

Typical ARP implementations stateless,
don’t mind changes

Now you get victim’s traffic, can read,
modify, resend



rlogin and reverse DNS

rlogin uses reverse DNS to see if
originating host is on whitelist

How can you attack this mechanism
with an honest source IP address?

rlogin and reverse DNS

rlogin uses reverse DNS to see if
originating host is on whitelist

How can you attack this mechanism
with an honest source IP address?

Remember, ownership of reverse-DNS
is by IP address

Outline

Brief introduction to networking

Announcements intermission

BCECHO

Some classic network attacks

Second half of course

Cryptographic primitives

Core mathematical tools

Symmetric: block cipher, hash function,
MAC

Public-key: encryption, signature

Some insights on how they work, but
concentrating on how to use them
correctly

Cryptographic protocols

Sequence of messages and crypto
privileges for, e.g., key exchange

A lot can go wrong here, too

Also other ways security can fail even
with a good crypto primitive

Crypto in Internet protocols

How can we use crypto to secure
network protocols

E.g., rsh ! ssh

Challenges of getting the right public
keys

Fitting into existing usage ecosystems



Web security: server side

Web software is privileged and
processes untrusted data: what could
go wrong?

Shell script injection (Ex. 1)

SQL injection

Cross-site scripting (XSS) and related
problems

Web security: client side

JavaScript security environment even
more tricky, complex

More kinds of cross-site scripting

Possibilities for sandboxing

Security middleboxes

Firewall: block traffic according to
security policy

NAT box: different original purpose, now
de-facto firewall

IDS (Intrusion Detection System):
recognize possible attacks

Malware and network DoS

Attacks made possible by the network

Viruses, trojans, bot nets
Detection?
Mitigation?

Distributed denial of service (DDoS)

Adding back privacy

Every Internet packet has source and
destination addresses on it

So how can network traffic be private
or anonymous?

Key technique: overlay a new network

Examples: onion routing (Tor),
anonymous remailing

Usability of security

Prevent people from being the weakest
link

Usability of authentication

“Secure” web sites, phishing

Making decisions about mobile apps



Electronic voting

Challenging: hard versions of many
hard problems:

Trust in software
Usability
Simultaneously public and private

Some deployed systems arguably
worse than paper

Can do better with crypto and systems
approaches

Next time

Symmetric crypto primitives


