CSci 5271
Introduction to Computer Security
Day 1I: OS security: higher assurance

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

OS trust and assurance

Trusted and trustworthy

©) Part of your system is trusted if its
failure can break your security

£) Thus, OS is almost always trusted
©) Real question: is it trustworthy?

) Distinction not universally observed:
trusted boot, Trusted Solaris, etc.

Trusted (I/0) path

£) How do you know you're talking to the
right software?

©) And no one is sniffing the data?

©) Example: Trojan login screen

® Or worse: unlock screensaver with root
password
® Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

©) Kernel — microkernel — nanokernel

) Reference monitor concept

) TCB size: measured relative to a policy
goal

) Reference monitor C TCB
® But hard to build monitor for all goals

How to gain assurance

) Use for a long time

) Testing

) Code / design review
©) Third-party certification
) Formal methods / proof




Evaluation / certification

) Testing and review performed by an
independent party

) Goal: separate incentives, separate
accountability

©) Compare with financial auditing

) Watch out for: form over substance,
misplaced incentives

Orange book OS evaluation

) Trusted Computer System Evaluation
Criteria
D. Minimal protection
C. Discretionary protection
®m C2 adds, eg., secure audit over Cl
B. Mandatory protection
® Bl<B2<B3: stricter classic MLS

A. Verified protection

Common Criteria

©) International standard and agreement
for IT security certification

) Certification against a protection profile,
and evaluation assurance level EAL 1-7

) Evaluation performed by
non-government labs

©) Up to EAL 4 automatically
cross-recognized

Common Criteria, Anderson’s view

) Many profiles don't specify the right
things
) OSes evaluated only in unrealistic
environments
® Eg., unpatched Windows XP with no
network attacks
£) "Corruption, Manipulation, and Inertia”
® Pernicious innovation: evaluation paid for
by vendor
® Labs beholden to national security
apparatus

Formal methods and proof

) Can math come to the rescue?
) Checking design vs. implementation

©) Automation possible only with other
tradeoffs
® Eg, bounded size model
) Starting to become possible:
machine-checked proof

Proof and complexity

©) Formal proof is only feasible for
programs that are small and elegant

©) If you honestly care about assurance,
you want your TCB small and elegant
anyway

) Should provability further quide design?




Some hopeful proof results

) seL.4 microkernel (SOSP'09 and
ongoing)
®m 75 kL C, 200 kL proof, 160 bugs fixed, 25
person years

) CompCert C-subset compiler (PLDI'O6
and ongoing)
) RockSalt SFI verifier (PLDI'2)

Outline

Announcements intermission

Note to early readers

) This is the section of the slides most
likely to change in the final version
) If class has already happened, make
sure you have the latest slides for

announcements

Outline

Unix access control

UIDs and GIDs

) To kernel, users and groups are just
numeric identifiers
©) Names are a user-space nicety
®mEQ, /etc/passwd mapping
©) Historically 16-bit, now 32
) User O is the special superuser root
® Exempt from all access control checks

File mode bits

) Core permissions are 9 bits, three
groups of three

©) Read, write, execute for user, group,
other

) 1s format: rwx r-x r—-
©) Octal format: 0754




Interpretation of mode bits

©) File also has one user and group ID

) Choose one set of bits
® If users match, use user bits
® If subject is in the group, use group bits
® Otherwise, use other bits
) Note no fallback, so can stop yourself
or have negative groups
mButusualy OCGCU

Directory mode bits

£) Same bits, slightly different
interpretation

©) Read: list contents (eg, 1s)
) Write: add or delete files
r) Execute: traverse

) X but not R means: have to know the
names

Process UIDs and setuid(2)

@) UID is inherited by child processes, and
an unprivileged process can't change it

) But there are syscalls root can use to
change the UID, starting with setuid

©) Eg, login program, SSH server

Setuid programs, different UIDs

£ If 04000 “setuid” bit set, newly execd
process will take UID of its file owner

m Other side conditions, like process not
traced

) Specifically the effective UID is changed,
while the real UID is unchanged

® Shows who called you, allows switching
back

More different UIDs

©) Two mechanisms for temporary
switching:
® Swap real UID and effective UID (BSD)
®m Remember saved UID, allow switching to
it (System V)
£) Modern systems support both
mechanisms at the same time
©) Linux only: file-system UID
® Once used for NFS servers, now mostly
obsolete

Setgid, games

£ Setgid bit 02000 mostly analogous to
setuid

©) But note no supergroup, so UID O is still
special

) Classic application: setgid games for
managing high-score files




Special case: /tmp

©) Wed like to allow anyone to make files
in /tmp

) So, everyone should have write
permission

©) But don't want Alice deleting Bob's files

) Solution: “sticky bit” 01000

Special case: group inheritance

£) When using group to manage
permissions, want a whole tree to have
a single group

) When 02000 bit set, newly created
entries with have the parent’s group

® (Historic BSD behavior)

) Also, directories will themselves inherit

02000

"POSIX" ACLs

) Based on a withdrawn standardization
) More flexible permissions, still fairly
Unix-like
) Multiple user and group entries
® Decision still based on one entry
) Default ACLs: generalize group
inheritance

) Command line: getfacl, setfacl

ACL legacy interactions

©) Hard problem: don't break security of
legacy code
® Suggests: “fail closed”
) Contrary pressure: don't want to break
functionality
® Suggests: “fail open”
) POSIX ACL design: old group
permission bits are a mask on all novel
permissions

"POSIX" “capabilities”

©) Divide root privilege into smaller (~35)
pieces
) Note: not real capabilities

©) First runtime only, then added to FS
similar to setuid

©) Motivating example: ping
) Also allows permanent disabling

Privilege escalation dangers

£) Many pieces of the root privilege are
enough to regain the whole thing
m Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP_FOWNER
® CAP_SYS_MODULE
® CAP_MKNOD
® CAP_PTRACE
® CAP_SYS_ADMIN (mount)




Legacy interaction dangers

) Former bug: take away capability to
drop privileges

) Use of temporary files by no-longer
setuid programs

) For more details: “Exploiting
capabilities”, Emeric Nasi




