
CSci 5271
Introduction to Computer Security

OS security advanced topics
(combined lecture)

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Mandatory access control, cont’d

Unix access control

Announcements, HA1

Capability-based access control

OS trust and assurance

Lattice BLP example Another notation

Faculty
! (Faculty, ?)

Faculty//5271
! (Faculty, f5271g)

Faculty//5271//8271
! (Faculty, f5271; 8271g)

MLS operating systems

1970s timesharing, including Multics

“Trusted” versions of commercial Unix
(e.g. Solaris)

SELinux (called “type enforcement”)

Integrity protections in Windows Vista
and later

Multi-VM systems

One (e.g., Windows) VM for each
security level

More trustworthy OS underneath
provides limited interaction

E.g., NSA NetTop: VMWare on SELinux

Downside: administrative overhead



Air gaps, pumps, and diodes

The lack of a connection between
networks of different levels is called an
air gap

A pump transfers data securely from
one network to another

A data diode allows information flow in
only one direction

Chelsea Manning cables leak

Manning (née Bradley) was an
intelligence analyst deployed to Iraq
PC in a T-SCIF connected to SIPRNet
(Secret), air gapped
CD-RWs used for backup and software
transfer
Contrary to policy: taking such a
CD-RW home in your pocket
http://www.fas.org/sgp/jud/manning/022813-statement.pdf

Outline

Mandatory access control, cont’d

Unix access control

Announcements, HA1

Capability-based access control

OS trust and assurance

UIDs and GIDs

To kernel, users and groups are just
numeric identifiers
Names are a user-space nicety

E.g., /etc/passwd mapping

Historically 16-bit, now 32

User 0 is the special superuser root
Exempt from all access control checks

File mode bits

Core permissions are 9 bits, three
groups of three

Read, write, execute for user, group,
other

ls format: rwx r-x r--

Octal format: 0754

Interpretation of mode bits

File also has one user and group ID

Choose one set of bits
If users match, use user bits
If subject is in the group, use group bits
Otherwise, use other bits

Note no fallback, so can stop yourself
or have negative groups

But usually, O � G � U



Directory mode bits

Same bits, slightly different
interpretation

Read: list contents (e.g., ls)

Write: add or delete files

Execute: traverse

X but not R means: have to know the
names

Process UIDs and setuid(2)

UID is inherited by child processes, and
an unprivileged process can’t change it

But there are syscalls root can use to
change the UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d
process will take UID of its file owner

Other side conditions, like process not
traced

Specifically the effective UID is changed,
while the real UID is unchanged

Shows who called you, allows switching
back

More different UIDs

Two mechanisms for temporary
switching:

Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to
it (System V)

Modern systems support both
mechanisms at the same time
Linux only: file-system UID

Once used for NFS servers, now mostly
obsolete

Setgid, games

Setgid bit 02000 mostly analogous to
setuid

But note no supergroup, so UID 0 is still
special

Classic application: setgid games for
managing high-score files

Special case: /tmp

We’d like to allow anyone to make files
in /tmp

So, everyone should have write
permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000



Special case: group inheritance

When using group to manage
permissions, want a whole tree to have
a single group
When 02000 bit set, newly created
entries with have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit
02000

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly
Unix-like
Multiple user and group entries

Decision still based on one entry

Default ACLs: generalize group
inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of
legacy code

Suggests: “fail closed”

Contrary pressure: don’t want to break
functionality

Suggests: “fail open”

POSIX ACL design: old group
permission bits are a mask on all novel
permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35)
pieces

Note: not real capabilities

First runtime only, then added to FS
similar to setuid

Motivating example: ping

Also allows permanent disabling

Privilege escalation dangers

Many pieces of the root privilege are
enough to regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to
drop privileges

Use of temporary files by no-longer
setuid programs

For more details: “Exploiting
capabilities”, Emeric Nasi



Outline

Mandatory access control, cont’d

Unix access control

Announcements, HA1

Capability-based access control

OS trust and assurance

HA1 now live

PDF and VM instructions on course
web site

VM permissions issue resolved this
morning

Backdoor exploit worth 1 point due
Friday evening

HA1 vulnerability types

OS interaction/logic errors
Usually harder to find, easier to exploit

Memory safety/code-injection vulns
More obvious, but more work to exploit

Suggestion: work on both fronts

BCECHO

An even simpler buffer overflow
example

Can compile like BCMTA, install setuid
root

Will use for attack demo purposes next
week

Midterm exam Tuesday

Usual class time and location

Covers up through today’s lecture

Mix of short-answer and exercise-like
questions

Open books/notes/printouts, no
computers or other electronics

Sample exams (2013-2017) posted,
solutions tomorrow

Outline

Mandatory access control, cont’d

Unix access control

Announcements, HA1

Capability-based access control

OS trust and assurance



ACLs: no fine-grained subjects

Subjects are a list of usernames
maintained by a sysadmin

Unusual to have a separate subject for
an application

Cannot easily subset access (sandbox)

ACLs: ambient authority

All authority exists by virtue of identity

Kernel automatically applies all available
authority

Authority applied incorrectly leads to
attacks

Confused deputy problem

Compiler writes to billing database

Compiler can produce debug output to
user-specified file

Specify debug output to billing file,
disrupt billing

(Object) capabilities

A capability both designates a resource
and provides authority to access it
Similar to an object reference

Unforgeable, but can copy and distribute

Typically still managed by the kernel

Capability slogans (Miller et al.)

No designation without authority

Dynamic subject creation

Subject-aggregated authority mgmt.

No ambient authority

Composability of authorities

Access-controlled delegation

Dynamic resource creation

Partial example: Unix FDs

Authority to access a specific file

Managed by kernel on behalf of process

Can be passed between processes
Though rare other than parent to child

Unix not designed to use pervasively



Distinguish: password capabilities

Bit pattern itself is the capability
No centralized management

Modern example: authorization using
cryptographic certificates

Revocation with capabilities

Use indirection: give real capability via
a pair of middlemen

A! B via A! F! R! B

Retain capability to tell R to drop
capability to B

Depends on composability

Confinement with capabilities

A cannot pass a capability to B if it
cannot communicate with A at all

Disconnected parts of the capability
graph cannot be reconnected

Depends on controlled delegation and
data/capability distinction

OKL4 and seL4

Commercial and research microkernels

Recent versions of OKL4 use capability
design from seL4

Used as a hypervisor, e.g. underneath
paravirtualized Linux

Shipped on over 1 billion cell phones

Joe-E and Caja

Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

E.g., of JavaScript in an advertisement

Note reliance on Java and JavaScript
type safety

Outline

Mandatory access control, cont’d

Unix access control

Announcements, HA1

Capability-based access control

OS trust and assurance



Trusted and trustworthy

Part of your system is trusted if its
failure can break your security

Thus, OS is almost always trusted

Real question: is it trustworthy?

Distinction not universally observed:
trusted boot, Trusted Solaris, etc.

Trusted (I/O) path

How do you know you’re talking to the
right software?

And no one is sniffing the data?

Example: Trojan login screen
Or worse: unlock screensaver with root
password
Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

Kernel ! microkernel ! nanokernel

Reference monitor concept

TCB size: measured relative to a policy
goal
Reference monitor � TCB

But hard to build monitor for all goals

How to gain assurance

Use for a long time

Testing

Code / design review

Third-party certification

Formal methods / proof

Evaluation / certification

Testing and review performed by an
independent party

Goal: separate incentives, separate
accountability

Compare with financial auditing

Watch out for: form over substance,
misplaced incentives

Orange book OS evaluation

Trusted Computer System Evaluation
Criteria

D. Minimal protection
C. Discretionary protection

C2 adds, e.g., secure audit over C1
B. Mandatory protection

B1<B2<B3: stricter classic MLS

A. Verified protection



Common Criteria

International standard and agreement
for IT security certification

Certification against a protection profile,
and evaluation assurance level EAL 1-7

Evaluation performed by
non-government labs

Up to EAL 4 automatically
cross-recognized

Common Criteria, Anderson’s view

Many profiles don’t specify the right
things
OSes evaluated only in unrealistic
environments

E.g., unpatched Windows XP with no
network attacks

“Corruption, Manipulation, and Inertia”
Pernicious innovation: evaluation paid for
by vendor
Labs beholden to national security
apparatus

Formal methods and proof

Can math come to the rescue?

Checking design vs. implementation

Automation possible only with other
tradeoffs

E.g., bounded size model

Starting to become possible:
machine-checked proof

Proof and complexity

Formal proof is only feasible for
programs that are small and elegant

If you honestly care about assurance,
you want your TCB small and elegant
anyway

Should provability further guide design?

Some hopeful proof results

seL4 microkernel (SOSP’09 and
ongoing)

7.5 kL C, 200 kL proof, 160 bugs fixed, 25
person years

CompCert C-subset compiler (PLDI’06
and ongoing)

RockSalt SFI verifier (PLDI’12)


