CSci 5271
Introduction to Computer Security
OS security advanced topics
(combined lecture)

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Mandatory access control, contd

Lattice BLP example

Faculty//5271//8271

w
Faculty//! a //8271

cul
TA/52714/8271
[—W

[TA// A//8271

U
/ﬁ\i
4

AR

Lstadent; 1//8271

R
Student, 71 ent//8271

R
Student

Another notation

Faculty

— (Faculty, @)

Faculty//5271

— (Faculty, {5271})

Faculty//5271//82T1

— (Faculty, {5271, 8271})

MLS operating systems

) 1970s timesharing, including Multics

) “Trusted” versions of commercial Unix
(e.g. Solaris)

) SELinux (called “type enforcement”)

©) Integrity protections in Windows Vista
and later

Multi-VM systems

©) One (e.q, Windows) VM for each
security level

£) More trustworthy OS underneath
provides limited interaction

©) E.g, NSA NetTop: VMWare on SELinux
) Downside: administrative overhead




Air gaps, pumps, and diodes

) The lack of a connection between
networks of different levels is called an
air gap

©) A pump transfers data securely from
one network to another

) A data diode allows information flow in
only one direction

Chelsea Manning cables leak

£) Manning (née Bradley) was an
intelligence analyst deployed to Iraq

) PC in a T-SCIF connected to SIPRNet
(Secret), air gapped

) CD-RWs used for backup and software
transfer

©) Contrary to policy: taking such a
CD-RW home in your pocket

http://www.fas.org/sgp/jud/manning/022813-statement . pdf

Outline

Unix access control

UIDs and GIDs

©) To kernel, users and groups are just
numeric identifiers
) Names are a user-space nicety
s Eg, /etc/passwd mapping
©) Historically 16-bit, now 32
©) User O is the special superuser root
® Exempt from all access control checks

File mode bits

) Core permissions are 9 bits, three
groups of three

©) Read, write, execute for user, group,
other

0 1s format: rwx r-x r—-
) Octal format: 0754

Interpretation of mode bits

) File also has one user and group ID

) Choose one set of bits
m If users match, use user bits
® If subject is in the group, use group bits
m Otherwise, use other bits
) Note no fallback, so can stop yourself
or have negative groups
mButusually OC GCU




Directory mode bits

£) Same bits, slightly different
interpretation

©) Read: list contents (eg, 1s)
) Write: add or delete files
) Execute: traverse

) X but not R means: have to know the
names

Process UIDs and setuid (2)

©) UID is inherited by child processes, and
an unprivileged process can't change it

©) But there are syscalls root can use to
change the UID, starting with setuid

o) E.g, login program, SSH server

Setuid programs, different UIDs

0 If 04000 “setuid” bit set, newly execd
process will take UID of its file owner

® Other side conditions, like process not
traced

) Specifically the effective UID is changed,
while the real UID is unchanged

® Shows who called you, allows switching
back

More different UIDs

£) Two mechanisms for temporary
switching:
® Swap real UID and effective UID (BSD)
® Remember saved UID, allow switching to
it (System V)
©) Modern systems support both
mechanisms at the same time
£) Linux only: file-system UID

® Once used for NFS servers, now mostly
obsolete

Setqgid, games

) Setgid bit 02000 mostly analogous to
setuid

) But note no supergroup, so UID O is still
special

) Classic application: setgid games for
managing high-score files

Special case: /tmp

) Wed like to allow anyone to make files
in /tmp

) So, everyone should have write
permission

©) But don't want Alice deleting Bob's files

) Solution: “sticky bit” 01000




Special case: group inheritance

£) When using group to manage
permissions, want a whole tree to have
a single group

©) When 02000 bit set, newly created
entries with have the parent’s group

® (Historic BSD behavior)

) Also, directories will themselves inherit

02000

"POSIX" ACLs

) Based on a withdrawn standardization
) More flexible permissions, still fairly
Unix-like
) Multiple user and group entries
m Decision still based on one entry
) Default ACLs: generalize group
inheritance

£) Command line: getfacl, setfacl

ACL legacy interactions

) Hard problem: don't break security of
legacy code
® Suggests: “fail closed”
) Contrary pressure: don't want to break
functionality
® Suggests: “fail open”
) POSIX ACL design: old group
permission bits are a mask on all novel
permissions

"POSIX" “capabilities”

) Divide root privilege into smaller (~35)
pieces
©) Note: not real capabilities

£) First runtime only, then added to FS
similar to setuid

) Motivating example: ping
£ Also allows permanent disabling

Privilege escalation dangers

) Many pieces of the root privilege are
enough to regain the whole thing
m Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP_FOWNER
® CAP_SYS_MODULE
® CAP_MKNOD
® CAP_PTRACE
® CAP_SYS_ADMIN (mount)

Legacy interaction dangers

©) Former bug: take away capability to
drop privileges

£) Use of temporary files by no-longer
setuid programs

) For more details: "Exploiting
capabilities”, Emeric Nasi




Outline

Announcements, HAI

HAI now live

£) PDF and VM instructions on course
web site

£) VM permissions issue resolved this
morning

) Backdoor exploit worth 1 point due
Friday evening

HA1 vulnerability types

©) OS interaction/logic errors
m Usually harder to find, easier to exploit
©) Memory safety/code-injection vulns
® More obvious, but more work to exploit

) Suggestion: work on both fronts

BCECHO

©) An even simpler buffer overflow
example

£) Can compile like BCMTA, install setuid
root

) Will use for attack demo purposes next
week

Midterm exam Tuesday

) Usual class time and location

) Covers up through today’'s lecture

©) Mix of short-answer and exercise-like
guestions

) Open books/notes/printouts, no
computers or other electronics

) Sample exams (2013-2017) posted,
solutions tomorrow

Outline

Capability-based access control




ACLs: no fine-grained subjects

) Subjects are a list of usernames
maintained by a sysadmin

©) Unusual to have a separate subject for
an application

) Cannot easily subset access (sandbox)

ACLs: ambient authority

©) All authority exists by virtue of identity
©) Kernel automatically applies all available

authority

) Authority applied incorrectly leads to

attacks

Confused deputy problem

) Compiler writes to biling database

) Compiler can produce debug output to
user-specified file

) Specify debug output to billing file,
disrupt billing

(Object) capabilities

£) A capability both designates a resource
and provides authority to access it
©) Similar to an object reference
® Unforgeable, but can copy and distribute

) Typically still managed by the kernel

Capability slogans (Miller et al)

) No designation without authority

©) Dynamic subject creation

) Subject-aggregated authority mgmt.
©) No ambient authority

) Composability of authorities

) Access-controlled delegation

£) Dynamic resource creation

Partial example: Unix FDs

£) Authority to access a specific file
£) Managed by kernel on behalf of process

£) Can be passed between processes
® Though rare other than parent to child

©) Unix not designed to use pervasively




Distinguish: password capabilities

£) Bit pattern itself is the capability
® No centralized management
) Modern example: authorization using
cryptographic certificates

Revocation with capabilities

) Use indirection: give real capability via
a pair of middlemen

NmA—-BviaA—-F—=R—B

) Retain capability to tell R to drop
capability to B

©) Depends on composability

Confinement with capabilities

) A cannot pass a capability to B if it
cannot communicate with A at all

) Disconnected parts of the capability
graph cannot be reconnected

) Depends on controlled delegation and
data/capability distinction

OKL4 and selL4

) Commercial and research microkernels

) Recent versions of OKL4 use capability
design from selL4

©) Used as a hypervisor, eg. underneath
paravirtualized Linux

) Shipped on over 1 billion cell phones

Joe-E and Caja

) Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

©) E.g, of JavaScript in an advertisement

©) Note reliance on Java and JavaScript
type safety

Outline

OS trust and assurance




Trusted and trustworthy

©) Part of your system is trusted if its
failure can break your security

£) Thus, OS is almost always trusted
) Real question: is it trustworthy?

) Distinction not universally observed:
trusted boot, Trusted Solaris, etc.

Trusted (I/0) path

) How do you know you're talking to the
right software?

©) And no one is sniffing the data?

©) Example: Trojan login screen

® Or worse: unlock screensaver with root
password
® Origin of “Press Ctrl-Alt-Del to log in”

Minimizing trust

) Kernel — microkernel — nanokernel

) Reference monitor concept

) TCB size: measured relative to a policy
goal

) Reference monitor C TCB
® But hard to build monitor for all goals

How to gain assurance

) Use for a long time

) Testing

) Code / design review
©) Third-party certification
) Formal methods / proof

Evaluation / certification

©) Testing and review performed by an
independent party

) Goal: separate incentives, separate
accountability

) Compare with financial auditing

) Watch out for: form over substance,
misplaced incentives

Orange book OS evaluation

) Trusted Computer System Evaluation
Criteria
D. Minimal protection
C. Discretionary protection
®m C2 adds, eg., secure audit over Cl
B. Mandatory protection
® Bl<B2<B3: stricter classic MLS

A. Verified protection




Common Criteria

) International standard and agreement
for IT security certification

) Certification against a protection profile,
and evaluation assurance level EAL 1-7

©) Evaluation performed by
non-government labs

©) Up to EAL 4 automatically
cross-recognized

Common Criteria, Anderson’s view

£) Many profiles don't specify the right
things
) OSes evaluated only in unrealistic
environments
® Eg, unpatched Windows XP with no
network attacks
) “Corruption, Manipulation, and Inertia”
® Pernicious innovation: evaluation paid for
by vendor
® Labs beholden to national security
apparatus

Formal methods and proof

©) Can math come to the rescue?
) Checking design vs. implementation

) Automation possible only with other
tradeoffs
® E.g, bounded size model
) Starting to become possible:
machine-checked proof

Proof and complexity

©) Formal proof is only feasible for
programs that are small and elegant

©) If you honestly care about assurance,
you want your TCB small and elegant
anyway

£) Should provability further guide design?

Some hopeful proof results

) seL4 microkernel (SOSP'09 and
ongoing)
®m 75 KL C, 200 kL proof, 160 bugs fixed, 25
person years

©) CompCert C-subset compiler (PLDI'O6
and ongoing)
) RockSalt SFl verifier (PLDI'2)




