CSci 5271
Introduction to Computer Security
Day 9: OS security basics

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

OS security: protection and isolation

OS security topics

) Resource protection
) Process isolation

) User authentication
) Access control

Protection and isolation

£) Resource protection: prevent
processes from accessing hardware

) Process isolation: prevent processes
from interfering with each other

) Design: by default processes can do
neither

) Must request access from operating
system

Reference monitor

) Complete mediation: all accesses are

checked

©) Tamperproof: the monitor is itself
protected from modification

©) Small enough to be thoroughly verified

Hardware basis: memory protection

) Historic: segments

£) Modern: paging and page protection
= Memory divided into pages (e.9. 4k)
® Every process has own virtual to physical
page table
® Pages also have R/W/X permissions

Linux 32-bit example

OXFFffffff

Kernel
use only
0xc0000000

grows|down

Mainlstack

0x40000000

O e

Static code + data

‘4—— a|qe|ieae gog |ejoL ——»‘

0x08048000

Usually unused

Hardware basis: supervisor bit

£) Supervisor (kernel) mode: all
instructions available

) User mode: no hardware or VM control
instructions

©) Only way to switch to kernel mode is
specified entry point
) Also generalizes to multiple “rings”

Outline

OS security: authentication

Authentication factors

£) Something you know (password, PIN)
£) Something you have (e.g., smart card)
£) Something you are (biometrics)

) CAPTCHAS, time and location, ...

£) Multi-factor authentication

Passwords: love to hate

) Many problems for users, sysadmins,
researchers

) But familiar and near-zero cost of entry

) User-chosen passwords proliferate for
low-stakes web site authentication

Password entropy

) Model password choice as probabilistic
process

) If uniform, log, |S|
) Controls difficulty of guessing attacks

©) Hard to estimate for user-chosen
passwords
® Length is an imperfect proxy

Password hashing

) Idea: don't store password or
equivalent information
) Password ‘encryption’ is a
long-standing misnomer
® Eg, Unix crypt(3)
) Presumably hard-to-invert function h

) Store only h(p)

Dictionary attacks

£) Online: send quesses to server

©) Offline: attacker can check guesses
internally
) Specialized password lists more
effective than literal dictionaries
® Also generation algorithms (s — $, etc.)
£) ~25% of passwords consistently
vulnerable

Better password hashing

) Generate random salt s, store

(s,h(s,p))
® Block pre-computed tables and equality
inferences
® Salt must also have enough entropy

) Deliberately expensive hash function

® AKA password-based key derivation
function (PBKDF)
® Requirement for time and/or space

Password usability

©) User compliance can be a major

challenge
m Often caused by unrealistic demands

) Distributed random passwords usually
unrealistic

) Password aging: not too frequently

©) Never have a fixed default password in
a product

Backup authentication

) Desire: unassisted recovery from
forgotten password
) Fall back to other presumed-authentic
channel
® Email, cell phone
) Harder to forget (but less secret)
shared information
®m Mother's maiden name, first pet's name

) Brittle: ask Sarah Palin or Mat Honan

Centralized authentication

) Enterprise-wide (e.g., UMN ID)

£) Anderson: Microsoft Passport

) Today: Facebook Connect, Google ID

£) May or may not be single-sign-on
(SS0O)

o

+

Biometric authentication

Authenticate by a physical body
attribute

Hard to lose

Hard to reset
Inherently statistical
Variation among people

Example biometrics

£) (Handwritten) signatures

©) Fingerprints, hand geometry
£) Face and voice recognition
£) Iris codes

Error rates: ROC curve

Always
Perfect accept
100% ———
-
T
_~ S
2 eer o
75% / 20% FP &
20% FN <
&
&

7]
8 50% oFlip
o fair

14
0% 25% 50% 75% 100%
False positive rate

Outline

Announcements intermission

Note to early readers

Outline

) This is the section of the slides most
likely to change in the final version
) If class has already happened, make
sure you have the latest slides for

announcements

Basics of access control

Mechanism and policy

) Decision-making aspect of 0OS

) Should subject S (user or process) be
allowed to access object (e.g, file) O?

) Complex, since admin must specify
what should happen

Access control matrix

Slicing the matrix

0 O(nm) matrix impractical to store,
much less administer
) Columns: access control list (ACL)
® Convenient to store with object
m Eg, Unix file permissions
) Rows: capabilities
® Convenient to store by subject
® E.g, Unix file descriptors

grades.txt | /dev/hda | /usr/bin/bcvi
Alice r rw rx
Bob rw - rx
Carol r - rx
Groups/roles

©) Simplify by factoring out commonality
) Before: users have permissions

) After: users have roles, roles have
permissions

) Simple example: Unix groups
) Complex versions called role-based
access control (RBAC)

Outline

Unix-style access control

UIDs and GIDs

) To kernel, users and groups are just
numeric identifiers
£) Names are a user-space nicety
®m Eg, /etc/passwd mapping

) Historically 16-bit, now 32

) User O is the special superuser root
® Exempt from all access control checks

File mode bits

) Core permissions are 9 bits, three
groups of three

©) Read, write, execute for user, group,
other
0 1s format: rwx r-x r--

) Octal format; 0754

Interpretation of mode bits

) File also has one user and group ID

) Choose one set of bits
m If users match, use user bits
® If subject is in the group, use group bits
® Otherwise, use other bits

©) Note no fallback, so can stop yourself

or have negative groups
mButusually OC GCU

Directory mode bits

) Same bits, slightly different
interpretation

©) Read: list contents (e.g, 1s)
©) Write: add or delete files
) Execute: traverse

©) X but not R means: have to know the
names

Process UIDs and setuid(2)

©) UD is inherited by child processes, and
an unprivileged process can't change it

) But there are syscalls root can use to
change the UID, starting with setuid

© E.g, login program, SSH server

Setuid programs, different UIDs

) If 04000 “setuid” bit set, newly execd
process will take UID of its file owner

® Other side conditions, like process not
traced

) Specifically the effective UID is changed,
while the real UID is unchanged

® Shows who called you, allows switching
back

More different UIDs

£) Two mechanisms for temporary
switching:
® Swap real UID and effective UID (BSD)
®m Remember saved UID, allow switching to
it (System V)
£) Modern systems support both
mechanisms at the same time
£) Linux only: file-system UID

® Once used for NFS servers, now mostly
obsolete

Setqgid, games

) Setgid bit 02000 mostly analogous to
setuid

) But note no supergroup, so UID O is still
special

) Classic application: setgid games for
managing high-score files

Special case: /tmp

©) Wed like to allow anyone to make files
in /tmp

£) So, everyone should have write
permission

©) But don't want Alice deleting Bob's files

) Solution: “sticky bit” 01000

Special case: group inheritance

©) When using group to manage
permissions, want a whole tree to have
a single group

) When 02000 bit set, newly created
entries with have the parent’s group

® (Historic BSD behavior)

) Also, directories will themselves inherit

02000

Other permission rules

©) Only file owner or root can change
permissions
©) Only root can change file owner

® Former System V behavior: “give away
chown”

) Setuid/qid bits cleared on chown
m Set owner first, then enable setuid

Non-checks

£) File permissions on stat
) File permissions on link, unlink, rename
) File permissions on read, write

) Parent directory permissions generally
® Except traversal
® |.e, permissions not automatically
recursive

"POSIX" ACLs

) Based on a withdrawn standardization
) More flexible permissions, still fairly
Unix-like
£) Multiple user and group entries
® Decision still based on one entry
©) Default ACLs: generalize group
inheritance

£) Command line: getfacl, setfacl

ACL legacy interactions

©) Hard problem: don't break security of

legacy code
® Suggests: “fail closed”

) Contrary pressure: don't want to break
functionality
® Suggests: “fail open”
) POSIX ACL design: old group
permission bits are a mask on all novel
permissions

"POSIX" “capabilities”

) Divide root privilege into smaller (~35)
pieces
©) Note: not real capabilities

) First runtime only, then added to FS
similar to setuid

) Motivating example: ping
) Also allows permanent disabling

Privilege escalation dangers

©) Many pieces of the root privilege are
enough to regain the whole thing
m Access to files as UID O
® CAP_DAC_OVERRIDE
® CAP_FOWNER
CAP_SYS_MODULE
® CAP_MKNOD
® CAP_PTRACE
® CAP_SYS_ADMIN (mount)

@

Legacy interaction dangers

©) Former bug: take away capability to
drop privileges

) Use of temporary files by no-longer
setuid programs

) For more details: “Exploiting
capabilities”, Emeric Nasi

Next time

) Object capability systems
©) Mandatory access control
©) Information-flow security

