CSci 5271
Introduction to Computer Security
OS authentication and access control
(combined lecture)

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

OS protection and isolation (contd)

Hardware basis: memory protection

) Historic: segments

©) Modern: paging and page protection
® Memory divided into pages (e.g. 4k)
® Every process has own virtual to physical
page table
® Pages also have R/W/X permissions

Linux 32-bit example

Hardware basis: supervisor bit

©) Supervisor (kernel) mode: all
instructions available

) User mode: no hardware or VM control
instructions

©) Only way to switch to kernel mode is
specified entry point

) Also generalizes to multiple “rings”

Oxffffffff
Kernel
use only
— - 0xc0000000
T Malnlstack
grows|down
g
g
8 0x40000000
g Magriorv%stuﬁeap
Static code + data
l 0x08048000
v Usually unused
Outline

OS security: authentication

Authentication factors

) Something you know (password, PIN)
) Something you have (e.g.,, smart card)
) Something you are (biometrics)

) CAPTCHAS, time and location, ...

©) Multi-factor authentication

Passwords: love to hate

£) Many problems for users, sysadmins,
researchers

©) But familiar and near-zero cost of entry

) User-chosen passwords proliferate for
low-stakes web site authentication

Password entropy

) Model password choice as probabilistic
process

©) If uniform, log, |S|
) Controls difficulty of guessing attacks

) Hard to estimate for user-chosen

passwords
® Length is an imperfect proxy

Password hashing

) Idea: don't store password or
equivalent information
£) Password ‘encryption’ is a
long-standing misnomer
® Eg, Unix crypt(3)
©) Presumably hard-to-invert function h

) Store only h(p)

Dictionary attacks

) Online: send guesses to server

) Offline: attacker can check guesses
internally
) Specialized password lists more
effective than literal dictionaries
® Also generation algorithms (s — $, etc)
) ~25% of passwords consistently
vulnerable

Better password hashing

©) Generate random salt s, store

(s, h(s,p))
® Block pre-computed tables and equality
inferences
® Salt must also have enough entropy

) Deliberately expensive hash function

® AKA password-based key derivation
function (PBKDF)
® Requirement for time and/or space

Password usability

) User compliance can be a major

challenge
® Often caused by unrealistic demands

) Distributed random passwords usually
unrealistic

) Password aging: not too frequently

) Never have a fixed default password in
a product

Backup authentication

) Desire: unassisted recovery from
forgotten password
©) Fall back to other presumed-authentic
channel
® Email, cell phone
©) Harder to forget (but less secret)
shared information
® Mother's maiden name, first pet's name

) Brittle: ask Sarah Palin or Mat Honan

Centralized authentication

) Enterprise-wide (e.g., UMN ID)

©) Anderson: Microsoft Passport

) Today: Facebook Connect, Google ID

£) May or may not be single-sign-on
(SSO)

Biometric authentication

©) Authenticate by a physical body
attribute

+ Hard to lose

— Hard to reset

— Inherently statistical

— Variation among people

Example biometrics

) (Handwritten) signatures

©) Fingerprints, hand geometry
) Face and voice recognition
) Iris codes

Error rates: ROC curve

Always
Perfect accept
100%0

O/EER § ,;&Q

75% / 20% FP ,ooé’
20% FN S

0% 25% 50% 75% 100%
False positive rate

Outline Mechanism and policy

) Decision-making aspect of 0S

) Should subject S (user or process) be
allowed to access object (e.g, file) O?

) Complex, since admin must specify
what should happen

Basics of access control

Access control matrix Slicing the matrix

©) O(nm) matrix impractical to store,
much less administer

grades.txt | /dev/hda | /usr/bin/bcvi .
Alice r W -) Columns: access control list (ACL)
Bob w - rx ® Convenient to store with object
Carol r - rx ® Eg, Unix file permissions
©) Rows: capabilities
® Convenient to store by subject
® Eg, Unix file descriptors
Groups/roles Outline

©) Simplify by factoring out commonality
) Before: users have permissions

) After: users have roles, roles have
permissions

) Simple example: Unix groups
©) Complex versions called role-based
access control (RBAC)

Announcements, Ex. 1 debrief

Reversing the stack

void func(char *str) {
char buf[128];
strcpy (buf, str);
do_something() ;
return,;

Payment app

void payment(char *name, int amount_jpy,
char *purpose) {
float amount_usd = amount_jpy/109.2;
char memo[32] ;
strcpy(memo, "Payment for: ");
strcat (memo, purpose);
write_check(name, amount_usd, memo) ;

Reverse range

void reverse_range(int *a, int from,
int to) {
int *p = &al[from]; int *q = &altol;
while (!(p==q+1 |l p==q+ 2)) {

Deadlines reminder

) Yesterday: Project progress reports
£) Tomorrow: Ex. 2
£) Week from today: midterm

*p += *q;
*q = *p - *q;
*p = *p - *q;
pt+; q--;
}
}
Outline

Multilevel and mandatory access control

MAC vs. DAC

) Discretionary access control (DAC)

® Users mostly decide permissions on their
own files

® If you have information, you can pass it on
to anyone

® Eg, traditional Unix file permissions

£) Mandatory access control (MAC)

® Restrictions enforced regardless of
subject choices
m Typically specified by an administrator

Motivation: it's classified

) Government defense and intelligence
agencies use classification to restrict
access to information

©) E.g: Unclassified, Confidential, Secret,
Top Secret

©) Multilevel Secure (MLS) systems first
developed to support mixing
classification levels under timesharing

Motivation: system integrity

©) Limit damage if a network server
application is compromised
® Unix DAC is no help if server is root
©) Limit damage from
browser-downloaded malware

® Windows DAC is no help if browser is
“administrator” user

Bell-LaPadula, linear case

) State-machine-like model developed for
US DoD in 1970s
1. A subject at one level may not read a
resource at a higher level
® Simple security property, *no read up”
2. A subject at one level may not write a
resource at a lower level
® * property, "no write down”

High watermark property

£) Dynamic implementation of BLP

) Process has security level equal to
highest file read

) Written files inherit this level

Biba and low watermark

©) Inverting a confidentiality policy gives
an integrity one

) Biba: no write up, no read down

©) Low watermark policy

©) BLP /\ Biba = levels are isolated

Information-flow perspective

) Confidentiality: secret data should not
flow to public sinks

) Integrity: untrusted data should not flow
to critical sinks

) Watermark policies are process-level
conservative abstractions

Covert channels

) Problem: conspiring parties can misuse
other mechanisms to transmit
information

) Storage channel: writable shared state

® E.g, screen brightness on mobile phone
©) Timing channel: speed or ordering of

events
® Eg, deliberately consume CPU time

Multilateral security / compartments

£ In classification, want finer divisions
based on need-to-know

£ Also, selected wider sharing (e.g., with
allied nations)
£) Many other applications also have this
character
® Anderson’s example: medical data

©) How to adapt BLP-style MAC?

Partial orders and lattices

©) < on integers is a total order
® Reflexive, antisymmetric, transitive, a < b
orb<a
©) Dropping last gives a partial order

©) A lattice is a partial order plus
operators for:
® Least upper bound or join L
® Greatest lower bound or meet M

©) Example: subsets with C, U, N

Subset lattice example

{1, 2, 3}

{1‘2} 2}<{1, 3}

{1} {2} {3}
%

Subset lattice example

{123}

{1 3} {2 3}

\XK

{2}

Lattice model

) Generalize MLS levels to elements in a
lattice

) BLP and Biba work analogously with
lattice ordering

©) No access to incomparable levels

) Potential problem: combinatorial
explosion of compartments

Classification lattice example

Faculty//5271//8271

Faculty// a /18271

cul
TA//52714/8271
| —

TA/S A//8271

i

A

| staden 1//8271

Student/75271 ent//8271

Student

Lattice BLP example

Faculty//5271//8271

W
Faculty// a /18271

cul
TA//5271//8271
—W

RW
TA//5 A/18271

TR

| stadent; 1//8271

R
Student 71 ent//8271

R
Student

Another notation

Faculty

— (Faculty, @)
Faculty//5271

— (Faculty, {5271})
Faculty//5271//82T1

— (Faculty, {5271, 8271})

MLS operating systems

£) 1970s timesharing, including Multics

£) "Trusted” versions of commercial Unix
(e.9. Solaris)

©) SELinux (called “type enforcement”)

©) Integrity protections in Windows Vista
and later

Multi-VM systems

©) One (e.g., Windows) VM for each
security level

) More trustworthy OS underneath
provides limited interaction

©) Eg, NSA NetTop: VMWare on SELinux

) Downside: administrative overhead

Air gaps, pumps, and diodes

) The lack of a connection between
networks of different levels is called an
air gap

©) A pump transfers data securely from
one network to another

©) A data diode allows information flow in
only one direction

Chelsea Manning cables leak

©) Manning (née Bradley) was an
intelligence analyst deployed to Iraq

©) PC in a T-SCIF connected to SIPRNet
(Secret), air gapped

) CD-RWs used for backup and software
transfer

) Contrary to policy: taking such a
CD-RW home in your pocket

http://www.fas.org/sgp/jud/manning/022813-statement .pdf

Outline

Capability-based access control

ACLs: no fine-grained subjects

) Subjects are a list of usernames
maintained by a sysadmin

©) Unusual to have a separate subject for
an application

) Cannot easily subset access (sandbox)

ACLs: ambient authority

©) All authority exists by virtue of identity

©) Kernel automatically applies all available
authority

) Authority applied incorrectly leads to
attacks

Confused deputy problem

) Compiler writes to billing database

) Compiler can produce debug output to
user-specified file

) Specify debug output to billing file,
disrupt billing

(Object) capabilities

©) A capability both designates a resource
and provides authority to access it
©) Similar to an object reference
® Unforgeable, but can copy and distribute

) Typically still managed by the kernel

Capability slogans (Miller et al)

) No designation without authority

©) Dynamic subject creation

) Subject-aggregated authority mgmt.
©) No ambient authority

) Composability of authorities

) Access-controlled delegation

) Dynamic resource creation

Partial example: Unix FDs

) Authority to access a specific file
) Managed by kernel on behalf of process

) Can be passed between processes
® Though rare other than parent to child

©) Unix not designed to use pervasively

Distinguish: password capabilities

©) Bit pattern itself is the capability
® No centralized management
) Modern example: authorization using
cryptographic certificates

Revocation with capabilities

) Use indirection: give real capability via
a pair of middlemen

DA —->BviaA—>F—-R—B

£) Retain capability to tell R to drop
capability to B

) Depends on composability

Confinement with capabilities

©) A cannot pass a capability to B if it
cannot communicate with A at all

) Disconnected parts of the capability
graph cannot be reconnected

) Depends on controlled delegation and
data/capability distinction

OKL4 and selL4

) Commercial and research microkernels

) Recent versions of OKL4 use capability
design from selL4

©) Used as a hypervisor, e9. underneath
paravirtualized Linux

) Shipped on over 1 billion cell phones

Joe-E and Caja

) Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

©) Eg, of JavaScript in an advertisement

) Note reliance on Java and JavaScript
type safety

