
CSci 5271
Introduction to Computer Security

Day 7: Defensive programming and design,
part 1

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Announcements intermission

Secure use of the OS

Economy of mechanism

Security mechanisms should be as
simple as possible

Good for all software, but security
software needs special scrutiny

Fail-safe defaults

When in doubt, don’t give permission

Whitelist, don’t blacklist

Obvious reason: if you must fail, fail safe

More subtle reason: incentives

Complete mediation

Every mode of access must be
checked

Not just regular accesses: startup,
maintenance, etc.

Checks cannot be bypassed
E.g., web app must validate on server, not
just client

Open design

Security must not depend on the
design being secret
If anything is secret, a minimal key

Design is hard to keep secret anyway
Key must be easily changeable if revealed
Design cannot be easily changed

Open design: strong version

“The design should not be secret”

If the design is fixed, keeping it secret
can’t help attackers

But an unscrutinized design is less
likely to be secure

Separation of privilege

Real world: two-person principle

Direct implementation: separation of
duty
Multiple mechanisms can help if they
are both required

Password and wheel group in Unix

Least privilege

Programs and users should have the
most limited set of powers needed to
do their job
Presupposes that privileges are suitably
divisible

Contrast: Unix root

Least privilege: privilege separation

Programs must also be divisible to
avoid excess privilege

Classic example: multi-process
OpenSSH server

N.B.: Separation of privilege 6= privilege
separation

Least common mechanism

Minimize the code that all users must
depend on for security

Related term: minimize the Trusted
Computing Base (TCB)

E.g.: prefer library to system call;
microkernel OS

Psychological acceptability

A system must be easy to use, if users
are to apply it correctly

Make the system’s model similar to the
user’s mental model to minimize
mistakes

Sometimes: work factor

Cost of circumvention should match
attacker and resource protected

E.g., length of password

But, many attacks are easy when you
know the bug

Sometimes: compromise recording

Recording a security failure can be
almost as good as preventing it

But, few things in software can’t be
erased by root

Outline

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Announcements intermission

Secure use of the OS

Pop quiz

What’s the type of the return value of
getchar?

Why?

Separate the control plane

Keep metadata and code separate
from untrusted data

Bad: format string vulnerability

Bad: old telephone systems

Defense in depth

Multiple levels of protection can be
better than one

Especially if none is perfect

But, many weak security mechanisms
don’t add up

Canonicalize names

Use unique representations of objects

E.g. in paths, remove ., .., extra
slashes, symlinks

E.g., use IP address instead of DNS
name

Fail-safe / fail-stop

If something goes wrong, behave in a
way that’s safe

Often better to stop execution than
continue in corrupted state

E.g., better segfault than code injection

Outline

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Announcements intermission

Secure use of the OS

Modularity

Divide software into pieces with
well-defined functionality
Isolate security-critical code

Minimize TCB, facilitate privilege
separation
Improve auditability

Minimize interfaces

Hallmark of good modularity: clean
interface
Particularly difficult:

Safely implementing an interface for
malicious users
Safely using an interface with a malicious
implementation

Appropriate paranoia

Many security problems come down to
missing checks

But, it isn’t possible to check everything
continuously

How do you know when to check what?

Invariant

A fact about the state of a program
that should always be maintained

Assumed in one place to guarantee in
another

Compare: proof by induction

Pre- and postconditions

Invariants before and after execution of
a function

Precondition: should be true before call

Postcondition: should be true after
return

Dividing responsibility

Program must ensure nothing unsafe
happens

Pre- and postconditions help divide that
responsibility without gaps

When to check

At least once before any unsafe
operation

If the check is fast

If you know what to do when the check
fails
If you don’t trust

your caller to obey a precondition
your callee to satisfy a postcondition
yourself to maintain an invariant

Sometimes you can’t check

Check that p points to a null-terminated
string

Check that fp is a valid function pointer

Check that x was not chosen by an
attacker

Error handling

Every error must be handled
I.e, program must take an appropriate
response action

Errors can indicate bugs, precondition
violations, or situations in the
environment

Error codes

Commonly, return value indicates error
if any

Bad: may overlap with regular result

Bad: goes away if ignored

Exceptions

Separate from data, triggers jump to
handler

Good: avoid need for manual copying,
not dropped

May support: automatic cleanup
(finally)

Bad: non-local control flow can be
surprising

Testing and security

“Testing shows the presence, not the
absence of bugs” – Dijkstra
Easy versions of some bugs can be
found by targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Fuzz testing

Random testing can also sometimes
reveal bugs

Original ‘fuzz’ (Miller): program
</dev/urandom

Modern: small random changes to a
benign input

Outline

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Announcements intermission

Secure use of the OS

Note to early readers

This is the section of the slides most
likely to change in the final version

If class has already happened, make
sure you have the latest slides for
announcements

Alternative Saltzer & Schroeder

Not a replacement for reading the real
thing, but:

http://emergentchaos.com/

the-security-principles-of-saltzer-and-schroeder

Security Principles of Saltzer and
Schroeder, illustrated with scenes from
Star Wars (Adam Shostack)

Outline

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Announcements intermission

Secure use of the OS

Avoid special privileges

Require users to have appropriate
permissions

Rather than putting trust in programs

Anti-pattern 1: setuid/setgid program

Anti-pattern 2: privileged daemon

But, sometimes unavoidable (e.g., email)

One slide on setuid/setgid

Unix users and process have a user id
number (UID) as well as one or more
group IDs

Normally, process has the IDs of the
use who starts it

A setuid program instead takes the UID
of the program binary

Don’t use shells or Tcl

. . . in security-sensitive applications

String interpretation and re-parsing are
very hard to do safely

Eternal Unix code bug: path names with
spaces

Prefer file descriptors

Maintain references to files by keeping
them open and using file descriptors,
rather than by name

References same contents despite file
system changes

Use openat, etc., variants to use FD
instead of directory paths

Prefer absolute paths

Use full paths (starting with /) for
programs and files

$PATH under local user control

Initial working directory under local user
control

But FD-like, so can be used in place of
openat if missing

Prefer fully trusted paths

Each directory component in a path
must be write protected

Read-only file in read-only directory
can be changed if a parent directory is
modified

Don’t separate check from use

Avoid pattern of e.g., access then open

Instead, just handle failure of open
You have to do this anyway

Multiple references allow races
And access also has a history of bugs

Be careful with temporary files

Create files exclusively with tight
permissions and never reopen them

See detailed recommendations in Wheeler

Not quite good enough: reopen and
check matching device and inode

Fails with sufficiently patient attack

Give up privileges

Using appropriate combinations of
set*id functions

Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid
Demystified (USENIX’02)

Whitelist environment variables

Can change the behavior of called
program in unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

Next time

Recommendations from the author of
qmail

A variety of isolation mechanisms

