CSci 5271
Introduction to Computer Security
Defensive programming 2
(combined lecture)

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Saltzer & Schroeder’s principles (contd)

Least common mechanism

) Minimize the code that all users must
depend on for security

) Related term: minimize the Trusted
Computing Base (TCB)

©) Eq. prefer library to system call;
microkernel OS

Psychological acceptability

©) A system must be easy to use, if users
are to apply it correctly

) Make the system’s model similar to the
user's mental model to minimize
mistakes

Sometimes: work factor

) Cost of circumvention should match
attacker and resource protected

0 Eg, length of password

©) But, many attacks are easy when you
know the bug

Sometimes: compromise recording

©) Recording a security failure can be
almost as good as preventing it

©) But, few things in software can't be
erased by root

Outline

More secure design principles

Pop quiz

£) What's the type of the return value of
getchar?

) Why?

Separate the control plane

) Keep metadata and code separate
from untrusted data

) Bad: format string vulnerability
©) Bad: old telephone systems

Defense in depth

£) Multiple levels of protection can be
better than one

) Especially if none is perfect

£) But, many weak security mechanisms
don't add up

Canonicalize names

) Use unique representations of objects
© Eg. in paths, remove ., .., extra
slashes, symlinks

0 Eqg, use IP address instead of DNS
name

Fail-safe / fail-stop

£) If something goes wrong, behave in a
way that's safe

) Often better to stop execution than
continue in corrupted state

©) E.g., better segfault than code injection

Outline

Software engineering for security

Modularity

©) Divide software into pieces with
well-defined functionality
) Isolate security-critical code
® Minimize TCB, facilitate privilege
separation
® Improve auditability

Minimize interfaces

) Hallmark of good modularity: clean
interface
©) Particularly difficult:

m Safely implementing an interface for
malicious users

m Safely using an interface with a malicious
implementation

Appropriate paranoia

£) Many security problems come down to
missing checks

©) But, it isn't possible to check everything
continuously

£) How do you know when to check what?

Invariant

) A fact about the state of a program
that should always be maintained

©) Assumed in one place to guarantee in
another

) Compare: proof by induction

Pre- and postconditions

©) Invariants before and after execution of
a function

) Precondition: should be true before call

) Postcondition: should be true after
return

Dividing responsibility

) Program must ensure nothing unsafe
happens

) Pre- and postconditions help divide that
responsibility without gaps

When to check

£) At least once before any unsafe
operation

©) If the check is fast

©) If you know what to do when the check
fails
£ If you don't trust

® your caller to obey a precondition
® your callee to satisfy a postcondition
® yourself to maintain an invariant

Sometimes you can't check

) Check that p points to a null-terminated
string

) Check that fp is a valid function pointer

) Check that x was not chosen by an
attacker

Error handling

) Every error must be handled

® |e, program must take an appropriate
response action

©) Errors can indicate bugs, precondition
violations, or situations in the
environment

Error codes

) Commonly, return value indicates error
if any

) Bad: may overlap with reqular result

©) Bad: goes away if ignored

Exceptions

) Separate from data, triggers jump to
handler

) Good: avoid need for manual copying,
not dropped

£) May support: automatic cleanup
(finally)

©) Bad: non-local control flow can be
surprising

Testing and security

) “Testing shows the presence, not the
absence of bugs” - Dijkstra
) Easy versions of some bugs can be

found by targeted tests:

m Buffer overflows: long strings
® Integer overflows: large numbers
® Format string vulnerabilities: %x

Fuzz testing

©) Random testing can also sometimes
reveal bugs

) Original ‘fuzz’ (Miller): program
</dev/urandom

©) Modern: small random changes to a
benign input

Outline

Announcements intermission

BCMTA pre-release posted

) Version 0.9 of source code includes
most features and many vulnerabilities

©) This version includes a pretty obvious
back-door which will be the first
problem to be fixed

) Can't properly test without VM, but you
can start reading the code

©) Reminder: register groups for a VM

What is BCMTA?

©) A badly coded mail-transfer agent,
similar to sendmail or gmail
® Can run from the command-line

® Can receive messages over the network
(SMTP on standard input)

) Needs to run as root to deliver to any
user's mailbox
m Attacker's goal: use root privilege to take

over machine
® Specifically: root shell

HA1 types of vulnerabilities

©) OS interaction/logic errors

) Memory safety errors
® E.g, exploit with control-flow hijacking
) Attacks may require crafted text files
and chosen program inputs

Other upcoming assignments

) Project progress reports: due next
Monday 2/25
m Remember, these are individual
) Exercise set 2: due week from
Wednesday, 2/27

Outline

Bernstein’s perspective

Historical background

) Traditional Unix MTA: Sendmail (BSD)

® Monolithic setuid root program
® Designed for a more trusting era
® In mid-90s, bugs seemed endless
) Spurred development of new,
security-oriented replacements
® Bernstein’s gmail
® Venema et al’s Postfix

Distinctive gmail features

) Single, security-oriented developer

) Architecture with separate programs
and UIDs

©) Replacements for standard libraries

) Deliveries into directories rather than
large files

Ineffective privilege separation

) Example: prevent Netscape DNS helper
from accessing local file system
) Before: bug in DNS code
— read user's private files
©) After: bug in DNS code

— inject bogus DNS results
— man-in-the-middle attack
— read user's private web data

Effective privilege separation

) Transformations with constrained 1/0

) General argument: worst adversary can

do is control output
® Which is just the benign functionality

) MTA header parsing (Sendmail bug)
) jpegtopnm inside x1loadimage

Eliminating bugs

©) Enforce explicit data flow

©) Simplify integer semantics

) Avoid parsing

) Generalize from errors to inputs

Eliminating code

) Identify common functions
©) Automatically handle errors
£) Reuse network tools

£) Reuse access controls

©) Reuse the filesystem

The “gmail security guarantee”

£) $500, later $1000 offered for security
bug
) Never paid out

) Issues proposed:

® Memory exhaustion DoS
m Overflow of signed integer indexes

) Defensiveness does not encourage
more submissions

gmail today

©) Originally had terms that prohibited

modified redistribution
® Now true public domain

©) Latest release from Bernstein: 1998;
netgmail: 2007

©) Does not have large market share

©) All MTAs, even Sendmail, are more
secure now

Outline

Techniques for privilege separation

Restricted languages

£) Main application: code provided by
untrusted parties

) Packet filters in the kernel

) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFI

) Software-based Fault Isolation

) Instruction-level rewriting like (but
predates) CFl

) Limit memory stores and sometimes
loads

) Can't jump out except to designated
points
©) Eg, Google Native Client

Separate processes

©) OS (and hardware) isolate one process
from another

©) Pay overhead for creation and
communication

©) System call interface allows many
possibilities for mischief

System-call interposition

) Trusted process examines syscalls
made by untrusted

©) Implement via ptrace (like strace, gdb)
or via kernel change

) Easy policy: deny

Interposition challenges

£) Argument values can change in
memory (TOCTTOU)

) OS objects can change (TOCTTOU)
) How to get canonical object identifiers?

) Interposer must accurately model
kernel behavior

) Details: Garfinkel (NDSS'03)

Separate users

) Reuse OS facilities for access control
©) Unit of trust: program or application
) Older example: gmail

©) Newer example: Android

) Limitation: lots of things available to
any user

chroot

©) Unix system call to change root
directory

) Restrict/virtualize file system access
©) Only available to root
) Does not isolate other namespaces

OS-enabled containers

) One kernel, but virtualizes all
namespaces

) FreeBSD jails, Linux LXC, Solaris zones,
etc.

) Quite robust, but the full, fixed, kernel is
in the TCB

(System) virtual machines

) Presents hardware-like interface to an
untrusted kernel

) Strong isolation, full administrative
complexity
0 1/0 interface looks like a network, etc.

Virtual machine designs

) (Type 1) hypervisor: ‘superkernel
underneath VMs

) Hosted: reqgular OS underneath VMs

©) Paravirtualizaion: modify kernels in VMs
for ease of virtualization

Virtual machine technologies

) Hardware based: fastest, now common
©) Partial translation: e.g., original VMware

©) Full emulation: e.g. QEMU proper

m Slowest, but can be a different CPU
architecture

Modern example: Chrom(ium)

) Separates “browser kernel” from

less-trusted “rendering engine”
® Pragmatic, keeps high-risk components
together

) Experimented with various Windows
and Linux sandboxing techniques

) Blocked 70% of historic vulnerabilities,
not all new ones

) http://seclab.stanford.edu/websec/

chromium/

Next time

©) Protection and isolation
) Basic (e.g,, classic Unix) access control

