
CSci 5271
Introduction to Computer Security

Low-level defenses, counterattacks,
defensive programming

(combined lecture)
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Anti-ROP

Control-flow integrity (CFI)

More modern exploit techniques

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Anti-ROP: lightweight

Check stack sanity in critical functions

Check hardware-maintained log of
recent indirect jumps (kBouncer)

Unfortunately, exploitable gaps

Gaps in lightweight anti-ROP

Three papers presented at 2014’s
USENIX Security

Hide / flush jump history

Very long loop ! context switch

Long “non-gadget” fragment

(Later: call-preceded gadgets)

Anti-ROP: still research

Modify binary to break gadgets

Fine-grained code randomization

Beware of adaptive attackers
(“JIT-ROP”)

Next up: control-flow integrity

Outline

Anti-ROP

Control-flow integrity (CFI)

More modern exploit techniques

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Some philosophy

Remember whitelist vs. blacklist?

Rather than specific attacks, tighten
behavior

Compare: type system; garbage collector
vs. use-after-free

CFI: apply to control-flow attacks

Basic CFI principle

Each indirect jump should only go to a
programmer-intended (or
compiler-intended) target

I.e., enforce call graph

Often: identify disjoint target sets

Approximating the call graph

One set: all legal indirect targets

Two sets: indirect calls and return
points

n sets: needs possibly-difficult
points-to analysis

Target checking: classic

Identifier is a unique 32-bit value

Can embed in effectively-nop
instruction

Check value at target before jump

Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h

jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1: performance

In CCS’05 paper: 16% avg., 45% max.
Widely varying by program
Probably too much for on-by-default

Improved in later research
Common alternative: use tables of legal
targets

Challenge 2: compatibility

Compilation information required

Must transform entire program together

Can’t inter-operate with untransformed
code

Supporting COTS programs

Commercial off-the-shelf binaries

CCFIR (Berkeley+PKU, Oakland’13):
Windows

CFI for COTS Binaries (Stony Brook,
USENIX’13): Linux

COTS techniques

CCFIR: use Windows ASLR information
to find targets

Linux paper: keep copy of original
binary, build translation table

Control-Flow Guard

CFI-style defense now in latest
Windows systems

Compiler generates tables of legal
targets

At runtime, table managed by kernel,
read-only to user-space

Coarse-grained counter-attack

“Out of Control” paper, Oakland’14

Limit to gadgets allowed by coarse
policy

Indirect call to function entry
Return to point after call site
(“call-preceded”)

Use existing direct calls to
VirtualProtect

Also used against kBouncer

Control-flow bending counter-attack

Control-flow attacks that still respect
the CFG

Especially easy without a shadow stack

Printf-oriented programming
generalizes format-string attacks

Outline

Anti-ROP

Control-flow integrity (CFI)

More modern exploit techniques

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Target #1: web browsers

Widely used on desktop and mobile
platforms

Easily exposed to malicious code

JavaScript is useful for constructing
fancy attacks

Heap spraying

How to take advantage of uncontrolled
jump?

Maximize proportion of memory that is
a target

Generalize NOP sled idea, using benign
allocator

Under W�X, can’t be code directly

JIT spraying

Can we use a JIT compiler to make our
sleds?
Exploit unaligned execution:

Benign but weird high-level code (bitwise
ops. with constants)
Benign but predictable JITted code
Becomes sled + exploit when entered
unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

JIT spray example

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

Use-after-free

Low-level memory error of choice in
web browsers

Not as easily audited as buffer
overflows

Can lurk in attacker-controlled corner
cases

JavaScript and Document Object Model
(DOM)

Sandboxes and escape

Chrome NaCl: run untrusted native
code with SFI

Extra instruction-level checks somewhat
like CFI

Each web page rendered in own,
less-trusted process
But not easy to make sandboxes
secure

While allowing functionality

Chained bugs in Pwnium 1

Google-run contest for complete
Chrome exploits

First edition in spring 2012

Winner 1: 6 vulnerabilities

Winner 2: 14 bugs and “missed
hardening opportunities”

Each got $60k, bugs promptly fixed

Outline

Anti-ROP

Control-flow integrity (CFI)

More modern exploit techniques

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Economy of mechanism

Security mechanisms should be as
simple as possible

Good for all software, but security
software needs special scrutiny

Fail-safe defaults

When in doubt, don’t give permission

Whitelist, don’t blacklist

Obvious reason: if you must fail, fail safe

More subtle reason: incentives

Complete mediation

Every mode of access must be
checked

Not just regular accesses: startup,
maintenance, etc.

Checks cannot be bypassed
E.g., web app must validate on server, not
just client

Open design

Security must not depend on the
design being secret
If anything is secret, a minimal key

Design is hard to keep secret anyway
Key must be easily changeable if revealed
Design cannot be easily changed

Open design: strong version

“The design should not be secret”

If the design is fixed, keeping it secret
can’t help attackers

But an unscrutinized design is less
likely to be secure

Separation of privilege

Real world: two-person principle

Direct implementation: separation of
duty
Multiple mechanisms can help if they
are both required

Password and wheel group in Unix

Least privilege

Programs and users should have the
most limited set of powers needed to
do their job
Presupposes that privileges are suitably
divisible

Contrast: Unix root

Least privilege: privilege separation

Programs must also be divisible to
avoid excess privilege

Classic example: multi-process
OpenSSH server

N.B.: Separation of privilege 6= privilege
separation

Least common mechanism

Minimize the code that all users must
depend on for security

Related term: minimize the Trusted
Computing Base (TCB)

E.g.: prefer library to system call;
microkernel OS

Psychological acceptability

A system must be easy to use, if users
are to apply it correctly

Make the system’s model similar to the
user’s mental model to minimize
mistakes

Sometimes: work factor

Cost of circumvention should match
attacker and resource protected

E.g., length of password

But, many attacks are easy when you
know the bug

Sometimes: compromise recording

Recording a security failure can be
almost as good as preventing it

But, few things in software can’t be
erased by root

Outline

Anti-ROP

Control-flow integrity (CFI)

More modern exploit techniques

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Pop quiz

What’s the type of the return value of
getchar?

Why?

Separate the control plane

Keep metadata and code separate
from untrusted data

Bad: format string vulnerability

Bad: old telephone systems

Defense in depth

Multiple levels of protection can be
better than one

Especially if none is perfect

But, many weak security mechanisms
don’t add up

Canonicalize names

Use unique representations of objects

E.g. in paths, remove ., .., extra
slashes, symlinks

E.g., use IP address instead of DNS
name

Fail-safe / fail-stop

If something goes wrong, behave in a
way that’s safe

Often better to stop execution than
continue in corrupted state

E.g., better segfault than code injection

Outline

Anti-ROP

Control-flow integrity (CFI)

More modern exploit techniques

Saltzer & Schroeder’s principles

More secure design principles

Software engineering for security

Modularity

Divide software into pieces with
well-defined functionality
Isolate security-critical code

Minimize TCB, facilitate privilege
separation
Improve auditability

Minimize interfaces

Hallmark of good modularity: clean
interface
Particularly difficult:

Safely implementing an interface for
malicious users
Safely using an interface with a malicious
implementation

Appropriate paranoia

Many security problems come down to
missing checks

But, it isn’t possible to check everything
continuously

How do you know when to check what?

Invariant

A fact about the state of a program
that should always be maintained

Assumed in one place to guarantee in
another

Compare: proof by induction

Pre- and postconditions

Invariants before and after execution of
a function

Precondition: should be true before call

Postcondition: should be true after
return

Dividing responsibility

Program must ensure nothing unsafe
happens

Pre- and postconditions help divide that
responsibility without gaps

When to check

At least once before any unsafe
operation

If the check is fast

If you know what to do when the check
fails
If you don’t trust

your caller to obey a precondition
your callee to satisfy a postcondition
yourself to maintain an invariant

Sometimes you can’t check

Check that p points to a null-terminated
string

Check that fp is a valid function pointer

Check that x was not chosen by an
attacker

Error handling

Every error must be handled
I.e, program must take an appropriate
response action

Errors can indicate bugs, precondition
violations, or situations in the
environment

Error codes

Commonly, return value indicates error
if any

Bad: may overlap with regular result

Bad: goes away if ignored

Exceptions

Separate from data, triggers jump to
handler

Good: avoid need for manual copying,
not dropped

May support: automatic cleanup
(finally)

Bad: non-local control flow can be
surprising

Testing and security

“Testing shows the presence, not the
absence of bugs” – Dijkstra
Easy versions of some bugs can be
found by targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Fuzz testing

Random testing can also sometimes
reveal bugs

Original ‘fuzz’ (Miller): program
</dev/urandom

Modern: small random changes to a
benign input

Next time

Secure use of the OS

Recommendations from the author of
qmail

A variety of isolation mechanisms

