CSci 5271
Introduction to Computer Security
Low-level defenses and counterattacks
(combined lecture)

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Return address protections

Complex anti-canary attack

) Canary not updated on fork in server

) Attacker controls number of bytes
overwritten

Complex anti-canary attack

©) Canary not updated on fork in server

) Attacker controls number of bytes
overwritten

) ANRY BNRY CNRY DNRY ENRY FNRY
) search 232 — search 4 - 28

Shadow return stack

) Suppose you have a safe place to store
the canary

©) Why not just store the return address
there?

) Needs to be a separate stack
) Ultimate return address protection

Outline

ASLR and counterattacks

Basic idea

n

) "Address Space Layout Randomization

©) Move memory areas around randomly
so attackers can't predict addresses
) Keep internal structure unchanged
® E.g, whole stack moves together

Code and data locations

) Execution of code depends on memory
location
©) E.g, on 32-bit x86:
® Direct jumps are relative

® Function pointers are absolute
m Data must be absolute

Relocation (Windows)

) Extension of technique already used in
compilation

) Keep table of absolute addresses,
instructions on how to update

) Disadvantage: code modifications take
time on load, prevent sharing

PIC/PIE (GNU/Linux)

) “Position-Independent Code /
Executable”

©) Keep code unchanged, use register to
point to data area

) Disadvantage: code complexity, reqgister
pressure hurt performance

What's not covered

©) Main executable (Linux 32-bit PIC)
) Incompatible DLLs (Windows)
) Relative locations within a module/area

Entropy limitations

) Intuitively, entropy measures amount of
randomness, in bits

©) Random 32-bit int: 32 bits of entropy

©) ASLR page aligned, so at most
32 — 12 = 20 bits of entropy

£) Other constraints further reduce
possibilities

Leakage limitations

) If an attacker learns the randomized
base address, can reconstruct other
locations

©) Any stack address — stack
unprotected, etc.

GOT hijack (Mdiller)

£) Main program fixed, libc randomized
©) PLT in main program used to call libc

) Rewire PLT to call attacker’s favorite
libc functions

O Eg, turn printf into system

GOT hijack (Mdller)

printf@plt: jmp *0x8049678
system@plt: jmp *0x804967c¢

0x8049678: <addr of printf in libc>
0x804967c: <addr of system in libc>

ret2pop (Miuiller)

) Take advantage of shellcode pointer
already present on stack
) Rewrite intervening stack to treat the
shellcode pointer like a return address
® A long sequence of chained returns, one
pop

ret2pop (Miller)

—— shellcode

.
laddress— POP %ecx; ret

Outline

WaX (DEP)

Basic idea

) Traditional shellcode must go in a
memory area that is
m writable, so the shellcode can be inserted
® executable, so the shellcode can be
executed
) But benign code usually does not need

this combination
5 W xor X, really =(W A X)

Non-writable code, X — =W

©) E.g, read-only text section

£) Has been standard for a while,
especially on Unix

£ Lets OS efficiently share code with
multiple program instances

Non-executable data, W — —X

) Prohibit execution of static data, stack,
heap
©) Not a problem for most programs

® Incompatible with some GCC features no
one uses

®m Non-executable stack opt-in on Linux, but
now near-universal

Implementing W & X

) Page protection implemented by CPU

® Some architectures (e.g. SPARC) long
supported W @ X

) x86 historically did not
® One bit controls both read and execute
® Partial stop-gap “code segment limit”
©) Eventual obvious solution: add new bit
m NX (AMD), XD (Intel), XN (ARM)

One important exception

©) Remaining important use of
self-modifying code: just-in-time (JIT)
compilers
® E.g, all modern JavaScript engines
) Allow code to re-enable execution
per-block

® mprotect, VirtualProtect
® Now a favorite target of attackers

Counterattack: code reuse

r) Attacker can't execute new code

) So, take advantage of instructions
already in binary

) There are usually a lot of them
©) And no need to obey original structure

Classic return-to-libc (1997)

) Overwrite stack with copies of:

® Pointer to libc’s system function
® Pointer to "/bin/sh" string (also in libc)

£) The system function is especially
convenient
©) Distinctive feature: return to entry point

Chained return-to-libc

) Shellcode often wants a sequence of
actions, eg.
® Restore privileges
® Allow execution of memory area
® Overwrite system file, etc.
) Can put multiple fake frames on the
stack

® Basic idea present in 1997, further
refinements

Beyond return-to-libc

©) Can we do more? Oh, yes.

) Classic academic approach: what's the
most we could ask for?

) Here: “Turing completeness”
©) How to do it: next

Outline

Announcements

Note to early readers

) This is the section of the slides most
likely to change in the final version
) If class has already happened, make
sure you have the latest slides for

announcements

First project meetings

©) Sent invitations yesterday, for meetings
through next Monday

) Will see most of you later this week

) First progress reports due Monday
2/25

Exercise set 1

) Due tomorrow by 11:59pm

©) One member of each group should
submit PDF or plain text via Canvas

Outline

Return-oriented programming (ROP)

Basic new idea

) Treat the stack like a new instruction
set

) "Opcodes” are pointers to existing
code

) Generalizes return-to-libc with more
programmability

ret2pop (Miuiller)

) Take advantage of shellcode pointer
already present on stack
) Rewrite intervening stack to treat the
shellcode pointer like a return address
® A long sequence of chained returns, one
pop

ret2pop (Miller)

—— shellcode

ddress— POP %ecx; ret

— ret

uuuuu

Gadgets

) Basic code unit in ROP

©) Any existing instruction sequence that
ends in a return

£) Found by (possibly automated) search

Another partial example

—— int 0x80; ret

———>mov %ecx, %eax; ret
ey 125 (syscall 125 = mprotect)
~[—>pop %ecx; ret

uuuuu

sssss

cccccccccc

Overlapping x86 instructions

‘mov $0x56,%thsbb SOxff, %alHinc %eaxHor %al,%dh‘
[movzbl Oxlc(%esi),%edx| incl 0x8(%eax)
0f b6 56 lc ff 40 08 c6

©) Variable length instructions can start at
any byte
) Usually only one intended stream

Where gadgets come from

©) Possibilities:

® Entirely intended instructions

® Entirely unaligned bytes

® Fall through from unaligned to intended
) Standard x86 return is only one byte,

Oxc3

Building instructions

) String together gadgets into
manageable units of functionality

©) Examples:
® Loads and stores
® Arithmetic
® Unconditional jumps

) Must work around limitations of
available gadgets

Hardest case: conditional branch

) Existing jCC instructions not useful
) But carry flag CF is

) Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

©) Can also use other indirect jumps,
overlapping not required

©) Automation in gadget finding and
compilers

©) In practice: minimal ROP code to allow
transfer to other shellcode

Anti-ROP: lightweight

) Check stack sanity in critical functions

) Check hardware-maintained log of
recent indirect jumps (kBouncer)

) Unfortunately, exploitable gaps

Gaps in lightweight anti-ROP

£) Three papers presented at 2014's
USENIX Security

) Hide / flush jump history

) Very long loop — context switch
©) Long "non-gadget” fragment

) (Later: call-preceded gadgets)

Anti-ROP: still research

©) Modify binary to break gadgets

) Fine-grained code randomization

) Beware of adaptive attackers
("JIT-ROP")

©) Next up: control-flow integrity

Outline

Control-flow integrity (CFI)

Some philosophy

) Remember whitelist vs. blacklist?

) Rather than specific attacks, tighten
behavior

m Compare: type system; garbage collector
vs. use-after-free

) CFl: apply to control-flow attacks

Basic CFl principle

©) Each indirect jump should only go to a
programmer-intended (or
compiler-intended) target

0 l.e, enforce call graph
) Often: identify disjoint target sets

Approximating the call graph

) One set: all legal indirect targets

) Two sets: indirect calls and return
points

©) n sets: needs possibly-difficult
points-to analysis

Target checking: classic

) Identifier is a unique 32-bit value

) Can embed in effectively-nop
instruction

) Check value at target before jump
) Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h
jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1. performance

£) In CCS'05 paper: 16% avg., 45% max.
® Widely varying by program
® Probably too much for on-by-default

©) Improved in later research

®m Common alternative: use tables of legal
targets

Challenge 2: compatibility

©) Compilation information required

) Must transform entire program together
) Can't inter-operate with untransformed

code

Supporting COTS programs

) Commercial off-the-shelf binaries

) CCFIR (Berkeley+PKU, Oakland13):
Windows

) CFl for COTS Binaries (Stony Brook,
USENIX13): Linux

COTS technigues

) CCFIR: use Windows ASLR information
to find targets

) Linux paper: keep copy of original
binary, build translation table

Control-Flow Guard

) CFl-style defense now in latest
Windows systems

) Compiler generates tables of legal
targets

£) At runtime, table managed by kernel,
read-only to user-space

Coarse-grained counter-attack

) "Out of Control” paper, Oakland'14
©) Limit to gadgets allowed by coarse
policy

® Indirect call to function entry
® Return to point after call site
(“call-preceded”)

) Use existing direct calls to
VirtualProtect

) Also used against kBouncer

Control-flow bending counter-attack

©) Control-flow attacks that still respect
the CFG

) Especially easy without a shadow stack

) Printf-oriented programming
generalizes format-string attacks

Outline

More modern exploit techniques

Target #1: web browsers

) Widely used on desktop and mobile
platforms

) Easily exposed to malicious code

) JavaScript is useful for constructing
fancy attacks

Heap spraying

©) How to take advantage of uncontrolled
jump?
) Maximize proportion of memory that is

JIT spraying

£) Can we use a JIT compiler to make our
sleds?
©) Exploit unaligned execution:

a target

) Generalize NOP sled idea, using benign

allocator

©) Under WX, can't be code directly

® Benign but weird high-level code (bitwise
ops. with constants)

® Benign but predictable JITted code

® Becomes sled + exploit when entered
unaligned

JIT spray example

25 90 90 90 3c
25 90 90 90 3c
25 90 90 90 3c
25 90 90 90 3c

and $0x3c909090, %eax
and $0x3c909090, %eax
and $0x3c909090, %eax
and $0x3¢909090, jeax

JIT spray example

90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al
90 nop
90 nop
90 nop
3c 25 cmp $0x25,%al

Use-after-free

) Low-level memory error of choice in
web browsers

) Not as easily audited as buffer
overflows

) Can lurk in attacker-controlled corner
cases

) JavaScript and Document Object Model
(DOM)

Sandboxes and escape

£) Chrome NaCl: run untrusted native
code with SFI

m Extra instruction-level checks somewhat
like CFI

©) Each web page rendered in own,
less-trusted process

©) But not easy to make sandboxes
secure

® While allowing functionality

Chained bugs in Pwnium 1 Next time

) Google-run contest for complete
Chrome exploits

® First edition in spring 2012) Defensive design and programming
©) Winner 1. 6 vulnerabilities) Make your code less vulnerable the
©) Winner 2: 14 bugs and “missed first time

hardening opportunities”
©) Each got $60k, bugs promptly fixed

