CSci 5271
Introduction to Computer Security
Day 4: Low-level attacks

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Classic code injection attacks

Overwriting the return address

L

arg
#2

12 (%ebp)

arg
#1_18(%ebp)

deturn
ddress

T

4(%ebp)
l«—— %ebp
| |-4(%ebp)

-8(%ebp)

“top" of har(8]
sta

%esp [0 |-16(%ebp)

Collateral damage

El
#2 12(%ebp)
g

_" "~ |8(%ebp)

%14 (%ebp)

le—— %ebp

-4(%ebp)

—_—

-8(%ebp)

lo
“top" of har[8]
tack

stacl
%esp. [0] |-16(%ebp)

Collateral damage

) Stop the program from crashing early

) 'Overwrite’ with same value, or another
legal one

) Minimize time between overwrite and
use

Other code injection targets

) Function pointers
® Local, global, on heap

©) longjmp buffers
£) GOT (PLT) / import tables
) Exception handlers

Indirect overwrites

©) Change a data pointer used to access
a code pointer
©) Easiest if there are few other uses

©) Common examples

® Frame pointer
m C+ object vtable pointer

Non-sequential writes

©) E.g. missing bounds check, corrupted
pointer
) Can be more flexible and targeted
® Eg, a write-what-where primitve
) More likely needs an absolute location
£) May have less control of value written

Unexpected-size writes

) Attacks don't need to obey normal
conventions

) Overwrite one byte within a pointer

) Use mis-aligned word writes to isolate
a byte

Outline

Announcements intermission

Note to early readers

) This is the section of the slides most
likely to change in the final version
) If class has already happened, make
sure you have the latest slides for

announcements
©) In particular, the BCVI vulnerability
announcement is embargoed

Outline

Shellcode techniques

Basic definition

©) Shellcode: attacker supplied instructions
implementing malicious functionality

) Name comes from example of starting
a shell

) Often requires attention to
machine-language encoding

Classic execve /bin/sh

£) execve (fname, argv, envp)
system call
) Specialized syscall calling conventions
£) Omit unneeded arguments
) Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

) Common requirement for shellcode in C
string
©) Analogy: broken O key on keyboard

) May occur in other parts of encoding
as well

More restrictions

£) No newlines

©) Only printable characters

©) Only alphanumeric characters
) “English Shellcode” (CCS'09)

Transformations

) Fold case, escapes, Latinl to Unicode,
etc.

©) Invariant: unchanged by transformation

) Pre-image: becomes shellcode only
after transformation

Multi-stage approach

£ Initially executable portion unpacks rest
from another format

) Improves efficiency in restricted
environments

©) But self-modifying code has pitfalls

NOP sleds

) Goal: make the shellcode an easier
target to hit
) Long sequence of no-op instructions,

real shellcode at the end
® x86: 0x90 0x90 0x90 0x90 0x90
...shellcode

Where to put shellcode?

©) In overflowed buffer, if big enough

£) Anywhere else you can get it
® Nice to have: predictable location
) Convenient choice of Unix local
exploits:

Where to put shellcode?

Environment variables

OXbfffffff
AUSER=smcc[igPATH=/bin:/usr/binko] || Environment/
A DISPLAY=:gliglLANG=en_US [0];i686[0] | | AUXV strings

HlcbRol/ et/ i4sueliol/ tmpfio] pafito 6 bvtes] | | argv strings
\6:\ 4096 / 1371792 15:[1] 0: 6]|auxv

i) environment
ia %E By argy

future\g rowth

Code reuse

0 If can't get your own shellcode, use
existing code
) Classic example: system
implementation in C library
® "Return to libc” attack

) More variations on this later

Outline

Exploiting other vulnerabilities

Non-control data overwrite

) Overwrite other security-sensitive data
©) No change to program control flow

) Set user ID to O, set permissions to all,
etc.

Heap meta-data

©) Boundary tags similar to doubly-linked
list

) Overwritten on heap overflow

) Arbitrary write triggered on free

) Simple version stopped by sanity
checks

"Break” | |

Heap meta-data

future [growth
the

Unallocated
area

|

|
\ |
(Free]! [1| Medium objects
i [T _Free]| W/ boundary tags
| S

CTFT T T TFT 7
FITTFIT T ITTTTT

]| Small objects
|| bucketed by size

Use after free

) Write to new object overwrites old, or
vice-versa

) Key issue is what heap object is
reused for

©) Influence by controlling other heap
operations

Integer overflows

) Easiest to use: overflow in small (8-,
16-bit) value, or only overflowed value
used

) 2GB write in 100 byte buffer

® Find some other way to make it stop
) Arbitrary single overwrite
® Use math to figure out overflowing value

Null pointer dereference

©) Add offset to make a predictable
pointer
®m On Windows, interesting address start low
) Allocate data on the zero page

® Most common in user-space to kernel
attacks
® Read more dangerous than a write

Format string attack

) Attacker-controlled format: little
interpreter
) Step one: add extra integer specifiers,

dump stack
® Already useful for information disclosure

Format string attack layout Format string attack layout

caller locals, caller locals,
other frames other frames
spec. spec.
arg #2 arg #2
spec. spec.
arg #1 argument arg #1 argument
- . .
e pointer o | pointer
string string
ptr \ ptr \
ar(f;‘r’égs %X %X %X %BX %X ar('f;t'errs‘s %X FX %X WX %X
caller frame 09 L caller frame [0 777
printf frame printf frame
Format string attack: overwrite Next time

) %n specifier: store number of chars
written so far to pointer arg

) Advance format arg pointer to other
attacker-controlled data

) Control number of chars written with
padding

©) On x86, use unaligned stores to create
pointer

) Defenses and counter-attacks

